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RESUMO

O objetivo é investigar a relevância em se utilizar a taxa da correção de defeitos
junto com a de cobertura de código como métrica dentro de um modelo de previsão
de  crescimento  de  confiabilidade  de  software.  No  levantamento  bibliográfico,
constatou-se nas fontes estudadas a ausência da utilização da taxa de correção de
defeitos como uma métrica junto com a taxa de cobertura do código, embora tais
métricas tenham sido propostas em 2004 e 2007, respectivamente. Considerando-se
esse cenário, foram aplicadas as duas métricas em um estudo de caso de software
elaborado por uma instituição pública brasileira, a fim de avaliar o desempenho da
previsão de confiabilidade das métricas citadas num cenário  real.  Portanto,  este
trabalho apresenta a análise dos resultados e perspectivas para pesquisas nesta
área de trabalho.

Palavras-chave:  Software.  Qualidade.  Confiabilidade.  Modelo  de  crescimento  de
confiabilidade de software.



ABSTRACT

The aim of this study is to investigate the relevance of using the fault removal rate
combined with code coverage rate as metrics in a software reliability growth model.
While researching the specialized literature, it was noticed the absence of the use of
fault removal rate as a metric along with the code coverage rate, even though these
metrics have been proposed in 2004 and 2007, respectively. This study applied the
two  metrics  using  a  case  study  of  a  software  developed  by  a  Brazilian  public
company in order to evaluate the performance of reliability estimation in a real-world
scenario. This paper presents the results of the analysis and suggests directions for
future research.

Keywords: Software. Quality. Reliability. Software reliability growth model.
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1. INTRODUÇÃO

Este capítulo  apresenta as motivações,  o  objetivo,  as justificativas e a estrutura do

trabalho.

1.1 Motivações

A  utilização  de  software  é  cada  vez  mais  intensa  nas  mais  diversas  funções

empresariais  e  pessoais.  Com  isso,  existe  demanda  para  o  desenvolvimento  de

software de alta qualidade. No entanto, a qualidade destes é um fator importante.

Neste sentido, ISO/IEC 25010 (ISO, 2011) apresenta um modelo com essa finalidade,

de  forma que  um conjunto  de  características  prevê  uma estrutura  de  trabalho  que

permite especificar requisitos de qualidade e avaliar a qualidade de um produto. Para

tanto, o modelo é composto por oito características: adequação funcional, eficiência de

desempenho, compatibilidade, usabilidade, confiabilidade, proteção, manutenibilidade e

portabilidade.

Segundo a ISO/IEC 25010 (ISO, 2011), confiabilidade é o grau no qual um sistema,

software ou componente funciona sob determinadas condições por um determinado

período de tempo. Por isso, a confiabilidde é uma das características mais importantes

referentes à qualidade de software (YAMADA , 2014, p. 1). 

Assim, para mensurar e gerenciar a confiabilidade do software, modelos matemáticos,

tipicamente NHPP (do inglês, Non-Homogeneous Poisson Process), podem ser usados

para fazer previsões sobre a quantidade de defeitos presentes no software em um dado

momento e a possibilidade de encontrar  novos defeitos durante a execução de um

software  por  um determinado  período  (JAFFAL;  TIAN,  2014,  p.  246).  Tais  modelos
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matemáticos são chamados de SRGM (do inglês, Software Reliability Growth Model).

Um SRGM é uma ferramenta crítica para controlar a qualidade do software. No entanto,

os modelos enfrentam dificuldades para representar exatamente, por meio de modelos

matemáticos, o crescimento da confiabilidade de software no mundo real (OKAMURA;

DOHI, 2008, p. 19). Além disso, nenhum SRGM proposto até o momento conseguiu

atuar em todos os cenários possíveis de desenvolvimento de software (ALMERING et

al., 2007, p. 87; IMMONEN;NIEMELA, 2007, p. 49), sendo necessário um cuidado extra

para  se  determinar  o  modelo  mais  adequado  a  ser  aplicado,  já  que  um  modelo

inadequado poderia fornecer dados que resultassem em decisões equivocadas dentro

de um projeto de desenvolvimento de software (ULLAH; MORISO;VETRO, 2012,  p.

188).

1.2 Objetivo

O objetivo do trabalho é avaliar a influência que o impacto dos defeitos encontrados

exerce  sobre  o  software no  processo  de  previsão  de  confiabilidade  do  software.

Também, o SRGM proposto por Cai e Lyu (CAI; LYU, 2007, p. 20), juntamente com o

método proposto por Gokhale,  Lyu e Trivedi  (2004, p.  218) para calcular a taxa de

remoção de defeitos foram combinados. O modelo resultante foi chamado de modelo

Cai-Gokhale  e  este  foi  aplicado  em  um  estudo  de  caso  de  software de  workflow

desenvolvido por uma instituição pública brasileira. A influência da taxa de remoção de

defeitos sobre a previsão de confiabilidade foi discutida.

1.3 Justificativa

Nos últimos anos, diversos SRGM foram propostos utilizando-se diversas abordagens e

métricas. Os primeiros modelos utilizaram uma única métrica. Adicionando-se outras
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métricas, o desempenho da previsão de confiabilidade apresentou melhoras. Huang,

Kuo e Lyu(2007, p. 198) apresentaram dois SRGSM, usando o esforço de teste como

uma métrica sob o cenário de depuração perfeita e imperfeita, isto é, onde um ou mais

defeitos podem ser inseridos no processo de remoção de um defeito. Já Wang, Moriso

e  Vetro   (2007,  p.  411)  incorporaram  a  estrutura  do  software como  um  fator  de

influência, mensurando a confiabilidade de cada componente do software na previsão

de  confiabilidade  do  software  como  um todo.  Por  fim,  Singh  et  al. (2007,  p.  360)

consideraram a  dependência  entre  defeitos,  isto  é,  não  encarando  cada  um como

independente de outros, mas sim, eventualmente, relacionando defeitos que provocam

outros defeitos, resultando em um efeito em cascata.

No  entanto,  o  aumento  de métricas  utilizadas  aumenta  a  incerteza ao se  obter  as

próprias medidas.  Isto  afeta a previsão de confiabilidade (LI;  XIE;  HUING, 2010,  p.

3560), mesmo que existam maneiras de determinar o grau de incerteza dentro de uma

previsão de confiabilidade (CHANDRAN; DIMOV; PUNNEKKAT, 2010, p. 227). Assim,

mesmo a maneira como o modelo lida com as falhas, em si, afeta a previsão, quer seja

considerando-se uma quantidade limitada ou ilimitada de possíveis defeitos no software

(YADAV; KHAN, 2009, p. 116).

Okamura, Etani e Dohi (2010, p. 32) abordaram a questão da incerteza no momento de

obtenção  das  medidas,  utilizando  técnicas  estatísticas  para  gerar  um  SRGM  mais

simples  e,  consequentemente,  com  um  nível  menor  de  incerteza  na  previsão  de

confiabilidade. Quadri,  Ahmad e Faroog (2011, p. 7), por sua vez, apresentaram um

modelo  onde  o  esforço  de teste  seguiu  uma distribuição  exponencial  generalizada,

assumindo que a taxa de surgimento de defeitos e o esforço de teste são proporcionais

à quantidade restante de defeitos no software. Já Kapur, Pham e Anand (2011, p. 333)

observaram que,  a  remoção de apenas um defeito  pode provocar  o surgimento de

outros  defeitos  e  a  quantidade  de  defeitos  removidos  não  necessariamente

corresponde à mesma quantidade de defeitos observados. Por fim, Peng et al. (2014, p.
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38)  consideraram o  esforço  de  detecção  de  defeitos  e  o  esforço  de  correção  dos

mesmos como dois fatores distintos que podem ser incorporados em outros SRGM.

No  levantamento  bibliográfico  deste  trabalho,  constatou-se  que  dois  fatores  que

repetidamente aparecem nos SRGM são: o tempo gasto com testes, como no modelo

apresentado por Singh et al.  (2007, p. 361), e o processo de depuração, ou correção

de defeito (ULLAH; MORISIO; VETRO, 2012, p. 187). Segundo Gokhale, Lyu e Trivedi

(2004, p. 213), um fator que deve ser levado em consideração é o tempo necessário

para corrigir um defeito. Também, Gokhale, Lyu e Trivedi (2004, p. 213) forneceram um

método para correlacionar a taxa de detecção de defeitos com a taxa de remoção de

defeitos. Durante os estudos para este trabalho, não foram encontrados modelos que

utilizassem tanto a taxa de cobertura de código quanto a taxa de correção de defeitos

como fatores para previsão de confiabilidade.

Este trabalho parte do pressuposto que o tempo de remoção de um defeito impacta na

taxa de detecção de novos defeitos, seja porque a equipe de testes precisa aguardar

que os defeitos sejam removidos (sob demanda ou por lote), seja porque defeitos não-

detectados foram removidos juntos com os defeitos já detectados.

Portanto, o presente trabalho verifica a influência que a taxa de remoção de defeitos

exerceu na previsão de confiabilidade, junto com a taxa de cobertura de código. Isso se

dá por meio da aplicação de um SRGM utilizando esses dois fatores, fazendo uma

análise  do  impacto  da  taxa  de  remoção  de  defeitos  sobre  a  previsibilidade  de

confiabilidade de software.
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1.4 Estrutura do Trabalho

Este trabalho está organizado na seguinte estrutura:

Capitulo  1  –  Introdução  –  Este  capítulo  descreve  as  motivações,  o  objetivo,  as

justificativas e estrutura do trabalho.

Capítulo 2 – Qualidade de Software – Este capítulo trata de definições de qualidade de

software,  sua influência no desenvolvimento de software,  especialmente na fase de

testes. Também, define os termos usados como erro, defeito e falha, métrica e medida e

confiabilidade de software.

Capítulo 3 – Modelos de Crescimento de Confiabilidade de Software – Este capítulo

trata de modelos de crescimento de confiabilidade de software, modelos matemáticos

envolvidos e a história da evolução destes, a aplicação de um ou dois fatores e o limite

de  fatores  impostos  pelas  incertezas  inerentes  ao  processo  de  previsão  de

confiabilidade de software.

Capítulo 4 – Modelo de Cai-Lyu e Método de Gokhale – Este capítulo apresenta o

modelo proposto por Cai e Lyu (2007), suas características e flexibilidade que o tornam

uma proposta interessante para análise proposta pelo presente trabalho.  Também é

apresentado  o  método  de  Gokhale,  Lyu  e  Trivedi  (2004),  para  estimar  a  taxa  de

remoção de defeitos e a influência que esta exerce sobre a previsão de confiabilidade

de software.
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Capítulo 5 – Modelo Proposto – Este capítulo apresenta uma proposta para avaliar a

influência do impacto de defeitos sobre a previsão de confiabilidade de  software. De

forma que o SRGM proposto por Cai  e Lyu (2007) é combinado com o método de

Gokhale, Lyu e Trivedi  (2004), sendo o modelo resultante chamado de modelo Cai-

Gokhale.

Capítulo 6 – Aplicação e Análise – Este capítulo apresenta a aplicação do modelo Cai-

Gokhale  em dados  coletados  durante  o  desenvolvimento  de  um software  por  uma

instituição pública brasileira, comparando-se os resultados do modelo Cai-Gokhale com

o modelo Cai-Lyu.

Capitulo 7 – Considerações Finais – Este capítulo apresenta conclusões do trabalho,

contribuições e aponta possíveis trabalhos futuros sobre o tema.

REFERÊNCIAS – Apresenta a lista de fontes usadas para a elaboração deste trabalho.

ANEXOS – Apresenta as tabelas com os dados utilizados no estudo de caso utilizado

no Capítulo 6.
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2. QUALIDADE DE SOFTWARE

A definição de qualidade é difícil, assim com é ainda mais difícil garantir a qualidade de

algum produto (HIRAMA, 2011). O software é um produto resultante da necessidade do

cliente e, como produto, precisa ter qualidade. Considerando-se que a utilização de

software é cada vez mais intensa nas diversas funções empresariais e pessoais, há

demanda para software de qualidade.

A qualidade de software é uma combinação complexa de características que variam de

acordo com as aplicações e clientes que o solicitam. Também, as necessidades de

software solicitadas pelos clientes estão tornando-se cada vez mais robustas, e assim,

como  resposta  para  atender  a  essa  gama  de  necessidades  surgem  diversas

tecnologias (PRESSMAN, 1995).

Além disso, tem havido uma conscientização maior da importância do gerenciamento

de qualidade de  software e da adoção de técnicas de gerenciamento de qualidade

envolvidas no desenvolvimento de  software. Alcançar um alto grau de qualidade nos

produtos  ou  serviços  é  o  principal  objetivo  da  maioria  das  organizações.  Assim,

desenvolver e entregar  produtos com baixa qualidade e reparar os problemas e as

deficiências existentes depois que os produtos foram entregues ao usuário, não é mais

aceitável atualmente (SOMMERVILLE, 2007).

Para se chegar em um produto de software ou para a manutenção de um já existente

são  executadas  diversas  atividades,  gerando-se  diferentes  subprodutos  que  são

necessários para a concepção do software. Essas atividades podem ser agrupadas em

processos,  os  quais  definem,  em  geral,  o  conjunto  de  atividades,  ferramentas  e

métodos  utilizados  no  desenvolvimento  de  um  determinado  produto  (HUMPHREY,

1989, p. 284).
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Pressman (1995) reforçou a tese que diversos esforços foram feitos para desenvolver

medições precisas da qualidade de software, sendo que esses, às vezes, frustraram-se

pela natureza subjetiva da atividade. Neste contexto, visando avaliar a qualidade de

produto de software, foram criadas e atualizadas periodicamente normas internacionais

e nacionais para tal finalidade.

Segundo a norma de qualidade ISO/IEC 25010 (ISO, 2011), a qualidade de software é

definida como “o grau em que o sistema satisfaz as necessidades implícitas e explícitas

de  seus  vários  stakeholders”.  Isto  significa  que  as  necessidades  explícitas  são

expressas  na  definição  de  requisitos  propostos  pelo  cliente,  ao  passo  que  as

necessidades implícitas são aquelas que podem não estar expressas nos documentos,

mas que são necessárias aos clientes.

O modelo apresentado na norma ISO/IEC 25010 (ISO, 2011) consiste em um modelo

de  qualidade  composto  por  um  conjunto  de  características  que  resultam  em  uma

estrutura de trabalho que permite especificar requerimentos de qualidade e avaliar a

qualidade de um produto.

A qualidade pode ser medida ao longo do processo de engenharia de software e depois

que este  foi  entregue ao cliente  e  aos usuários.  Na maioria  dos empreendimentos

técnicos, as medições de qualidade ajudam os profissionais envolvidos a entender o

processo técnico usado para desenvolver um produto, como também o próprio produto.

O processo  é  medido com a intenção de aprimorá-lo.  Assim,  o  produto  também é

medido com a finalidade de aumentar a sua qualidade (PRESSMAN, 1995).
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2.1 Modelo de Qualidade da Norma ISO/IEC 25010

O modelo de qualidade da norma ISO/IEC 25010 é composto por oito características: 1)

adequação funcional; 2) eficiência de desempenho; 3) compatibilidade; 4) usabilidade;

5) confiabilidade; 6) proteção; 7) manutenibilidade; e 8) portabilidade (ISO, 2011).

2.1.1 Adequação funcional

A adequação funcional é o grau em que um produto ou sistema fornece funções que

correspondam às necessidades explícitas e  implícitas  quando usado sob condições

especificadas. Ela é composto por três subcaracterísticas: 1)  completude funcional,

que é o  grau em que o conjunto  de funções abrange todas as tarefas e objetivos

específicos dos usuários; 2) correção funcional, que é o grau ao qual um produto ou

sistema  fornece  os  resultados  corretos  com  a  precisão  necessária;  e  3)

adequabilidade funcional, que é o grau em que as funções facilitam a realização das

tarefas e objetivos especificados.

2.1.2 Eficiência de desempenho

A eficiência  de  desempenho  é  a  eficiência  do  produto  ou  sistema  em  relação  à

quantidade de recursos utilizados sob condições estabelecidas. 

É composta por três subcaracterísticas: 1) comportamento temporal, que é grau em

que os tempos de resposta e de processamento e taxas de transferência de um produto

ou sistema, no desempenho das suas funções, atendem aos requisitos; 2)  utilização

de recursos, que é o grau em que as quantidades e tipos de recursos usados em um

produto ou sistema, no desempenho das suas funções, para atender aos requisitos; e
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3) capacidade, que é o grau em que os limites máximos de um parâmetro, de produto

ou sistema, atendem os requisitos.

2.1.3 Compatibilidade

A compatibilidade é o grau em que um produto, sistema ou componente pode trocar

informações  com  outros  produtos,  sistemas  ou  componentes,  e/ou  realizar  suas

funções  necessárias,  enquanto  compartilha  o  mesmo  ambiente  de  hardware  ou

software. Ela é composto por dois subcaracterísticas: 1)  co-existência, que é o grau

em que um produto pode desempenhar as suas funções de forma eficiente enquanto

compartilha um ambiente e/ou recursos comums com outros produtos, sem impacto

negativo em qualquer outro produto; e 2) interoperabilidade, que é o grau em que dois

ou mais sistemas, produtos ou componentes podem trocar informações e utilizar as

informações trocadas.

2.1.4 Usabilidade

A usabilidade é o grau em que um produto ou sistema pode ser usado por usuários

específicos para alcançar objetivos específicos com efetividade, eficiência e satisfação

em um contexto de uso específico.

Ela é composta por seis subcaracterísticas: 1) reconhecimento de adequação, que é

o grau em que os usuários podem reconhecer se um produto ou sistema é adequado

para as suas necessidades; 2) capacidade de aprendizado, que é o grau em que um

produto ou sistema pode ser usado por usuários específicos para alcançar objetivos

específicos de aprendizagem para usar o produto ou sistema com eficácia, a eficiência,

a  inexistência  de  risco  e  satisfação  dentro  de  um  contexto  de  uso  específico;  3)
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operabilidade, que é o grau em que um produto ou sistema tem atributos que o tornam

fácil de operar e controlar; 4) proteção de erros do usuário, que é o grau em que um

sistema protege os usuários de  cometerem erros; 5) estética da interface do usuário,

que  é  o  grau  em  que  uma  interface  do  produto  ou  sistema  permite  a  interação

agradável e satisfatória para o usuário; e 6) acessibilidade, que é o grau cujo produto

ou sistema pode ser usado por pessoas com a gama mais ampla de características e

capacidades para atingir um objetivo específico em um contexto de uso.

2.1.5 Confiabilidade

A confiabilidade é o grau em que um sistema, produto ou componente executa funções

especificadas sob condições específicas por um período de tempo estabelecido. Ela é

composta  por  quatro  subcaracterísticas:  1)  maturidade,  que  é  o  grau  em que  um

sistema,  produto  ou  componente  satisfaz  as  necessidades  de  confiabilidade  em

condições normais de operação; 2) disponibilidade, que é o grau em que um sistema,

produto  ou  componente  está  operacional  e  acessível  quando  for  necessária  sua

utilização;  3)  tolerância  a  defeito,  que  é  o  grau  em que  um sistema,  produto  ou

componente opera como pretendido, apesar da presença de defeitos de hardware ou

software; e 4) recuperabilidade, que é o grau em que, no caso de uma interrupção ou

uma falha, o produto ou sistema pode recuperar os dados diretamente afetados e re-

estabelecer o estado desejado do sistema.

2.1.6 Proteção

A proteção é o grau no qual um produto ou sistema protege informações e dados, de

modo que as pessoas, outros produtos ou sistemas possuam o apropriado grau de

acesso aos dados,  conforme seus respectivos  tipos  e  níveis  de  autorização.  Ela  é
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composto por cinco subcaracterísticas: 1) confidencialidade, que é o grau em que um

produto ou sistema garante que os dados estarão acessíveis  somente por pessoas

autorizadas a ter acesso; 2) integridade, que é o grau em que um sistema, produto ou

componente  impede  o  acesso  não  autorizado,  ou  alteração  de,  programas  de

computador ou dados; 3)  não-repúdio,  que é o grau em que as ações ou eventos

ocorridos dentro do produto ou sistema podem ter suas ocorrências provadas, de modo

que os eventos ou ações não podem ser repudiados mais tarde; 4) atribuição, que é o

grau em que as ações de uma entidade pode ser atribuídas exclusivamente a ela; e 5)

autenticidade, que é o grau em que a identidade de um assunto ou recurso podem ser

provado como único reivindicados.

2.1.7 Manutenibilidade

A manutenibilidade é grau de eficácia e eficiência com que um produto ou sistema pode

ser modificado pela designada equipe de manutenção.

Ela é composta por cinco subcaracterísticas: 1)  modularidade, que é o grau em que

um programa de computador ou sistema é composto por componentes discretos, de tal

forma que uma mudança em um determinado componente tem impacto mínimo sobre

os demais; 2) reusabilidade, que é grau em que um componente pode ser utilizado em

mais de um sistema, ou na construção de outros componentes; 3) analisabilidade, que

é o grau de eficácia e a eficiência com a qual é possível avaliar o impacto de uma

mudança sobre uma ou mais  partes de um produto ou de um sistema, quer seja para

diagnosticar deficiências ou causas de falhas de um produto, bem como para identificar

componentes a serem modificados; 4) modificabilidade, que é o grau cujo produto ou

sistema pode ser modificado de forma eficaz e eficiente sem a introdução de defeitos

ou degradação da qualidade do produto existente; e 5) testabilidade, que é o grau de

eficácia e eficiência com a qual é possível estabelecer critérios de teste de um sistema,
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produto ou componente de modo que testes podem ser realizados para determinar se

esses critérios foram ou não cumpridos.

2.1.8 Portabilidade

A portabilidade  é  o  grau de eficácia  e  eficiência  com que  um sistema,  produto  ou

componente  pode  ser  transferida  de  um  hardware,  software  ou  outro  ambiente

operacional, assim como para outro uso. Ela é composta por três subcaracterísticas: 1)

adaptabilidade, que é o grau cujo produto ou sistema pode eficaz e eficientemente ser

adaptado para outro hardware,  software ou outros ambientes operacionais ou de uso;

2) facilidade de  instalação, que é o grau de eficácia e eficiência com que um produto

ou sistema pode ser instalado e/ou removido de um ambiente especifico com sucesso;

e 3) facilidade de substituição, que é o grau ao qual um produto pode substituir outro

produto de software especificado para o mesmo fim no mesmo ambiente.

No  presente  trabalho  utilizou-se  a  definição  da  ISO/IEC  25010  (ISO,  2011)  para

confiabilidade como parâmetro de qualidade de software.

2.2 Métrica e Medida

Métrica é definida por Bohem, Brown e Lipow (1976) como a extensão ou grau em que

um sistema ou produto possui ou exibe uma certa característica. Métricas surgem da

necessidade de avaliar um artefato objetivamente e são utilizadas no desenvolvimento

de software para assegurar características como a confiabilidade. Medida é a indicação

quantitativa de uma certa característica de um sistema ou produto.
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2.3 Erro, Defeito e Falha

Erro é  a ação humana que produz um resultado incorreto,  por  exemplo,  quando o

desenvolvedor, ao interpretar equivocadamente os requisitos do software, comete erros

na codificação (HIRAMA, 2011).

Já o defeito é uma implementação incorreta dentro de um artefato, seja um defeito no

software ou dentro de um manual de instruções. Eles são inseridos em artefatos por

meio de erros (HIRAMA, 2011).

Por fim, falha é a incapacidade de um sistema ou componente em executar as funções

requeridas  dentro  de  um  nível  de  desempenho  definido.  Assim,  a  falha  pode  ser

entendida como a manifestação de um defeito dentro de um artefato (HIRAMA, 2011).

Com  bases  nestas  definições,  é  possível  afirmar  que  erros  causam  defeitos,  mas

defeitos não necessariamente produzem falhas. No entanto, erros podem ocorrer em

qualquer fase de desenvolvimento de software.

2.4 Considerações do Capítulo

O desenvolvimento de software envolve a execução de diversas atividades gerando-se

diferentes  subprodutos  que  são  necessários  para  a  concepção  do  software

(HUMPHREY, 1989, p. 284). O software desenvolvido visa satisfazer as necessidades

implícitas  e  explícitas  dos  stakeholders,  e  o  grau  em que  o  software  satisfaz  tais

necessidades é a definição da ISO/IEC 25010 (ISO, 2011) para qualidade.
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Durante o desenvolvimento, erros introduzidos por ação humana afetam diretamente a

qualidade  do  software,  produzindo  resultados  incorretos.  Nesse  contexto,  a

confiabilidade  do  software  é  o  grau  em  que  um  sistema,  produto  ou  componente

executa funções especificadas sob condições específicas por  um período de tempo

estabelecido (ISO, 2011). Ou seja, por quanto tempo um software consegue executar

as funções esperadas pelos stakeholders sem a ocorrência de uma falha.
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3. MODELOS DE CRESCIMENTO DE CONFIABILIDADE DE SOFTWARE

Uma ferramenta importante para ajudar um gestor de projeto de software a aferir a sua

confiabilidade,  isto  é,  por  quanto  tempo o  software pode funcionar  sem que falhas

ocorram,  é  o  modelo  de  crescimento  de  confiabilidade  de  software,  ou  como  é

conhecido: SRGM.

Assim, para utilizar tal modelo, é preciso coletar informações sobre o projeto, sendo que

cada SRGM possui um ou mais tipos de informação como entrada, também chamados

de fatores.

3.1 Confiabilidade de Software

Segundo  Sommerville  (2011,  p.  656),  os  interessados  em  um  software possuem

diversas necessidades que vão além das suas funcionalidades. Portanto, o nível no

qual  o  software atende  a  todas  essas  necessidades,  além  de  atender  as

funcionalidades necessárias, é o nível de qualidade do sistema.

Nesse sentido, uma dessas necessidades é a confiabilidade do  software. Segundo a

ISO/IEC 25010 (ISO, 2011), confiabilidade é o grau no qual um sistema,  software ou

componente  funciona  sob  determinadas  condições  por  um determinado  período  de

tempo. Desta maneira, a confiabilidade pode ser descrita como a probabilidade de um

software apresentar  o  resultado  esperado  durante  um  certo  tempo.  Porém,  isto  é

diferente  de  disponibilidade,  onde  o  software apresenta  o  resultado  esperado  no

momento  que o  usuário  solicita  o  resultado.  Logo,  a  confiabilidade implica  em uso

contínuo do software (SOMMERVILLE, 2011, p. 295).
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Segundo Yamada (2014, p. 1), a confiabilidade de software é uma das características

mais  importantes  referentes  à  qualidade.  Assim,  é  importante  ressaltar  que  a

confiabilidade está ligada ao cenário de uso do software, sendo que o mesmo pode ter

uma  confiabilidade  diferente  para  um  usuário  iniciante,  do  que  para  um  usuário

avançado, pois este pode explorar mais recursos e encontrar defeitos que o usuário

iniciante não encontraria.

De  acordo  com  Sommerville  (2011,  p.  300),  não  é  possível  ter  plena  certeza  da

completa ausência de defeitos em um software. Sendo assim, a confiabilidade pode ser

estimada calculando-se a provável quantidade de defeitos persistentes em um software.

Por isso, são efetuados testes levando-se em consideração os dados obtidos durante a

revisão de especificações, design e codificação.

Para  tanto,  um modelo  adequado  de  dados  de  teste  ajuda  a  identificar  a  taxa  de

defeitos  detectados  em um  software (CHANDRAN;  DIMOV;  PUNNEKKAT,  2010,  p.

229). Assim, é possível estimar a quantidade de defeitos ainda presentes no software e,

portanto, estimar durante quanto tempo o software apresentará o resultado esperado.

Por  fim,  a confiabilidade também pode ser  usada para tomar decisões estratégicas

sobre o  software como, por exemplo, indicar a quantidade de tempo e recursos que

devem ser aplicados para eliminar mais defeitos. Sendo que Okamura, Etani e Dohi

(2010,  p.  31)  defenderam  a  tese  de  que  a  confiabilidade  pode  ser  utilizada  para

determinar o momento do lançamento de um software no mercado.

3.2  Métodos para a Avaliação da Confiabilidade de Software

Segundo Chandran, Dimov e Punnekkat (2010, p. 229), há três grupos de métodos para

avaliar a confiabilidade de um software: testes, simulação e feedback de usuários.
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De acordo com Sommerville (2011, p. 206), o processo de testes possui dois objetivos

distintos: demonstrar que o software atende às especificações e descobrir falhas para

as devidas correções. Para isso, a avaliação de confiabilidade de  software utiliza os

dados  coletados  durante  a  busca  de  falhas.  Portanto,  o  teste  de  software é  a

abordagem  mais  comum,  sendo  um  elemento  crítico  na  garantia  de  qualidade  de

software , representando a revisão das suas especificações, design e codificação.

O segundo método, isto é, a simulação, ao contrário do método de teste para avaliar a

confiabilidade, parte do pressuposto de que a confiabilidade de software não depende

somente  de  sua  estrutura,  mas  também  do  tempo  de  execução,  frequência  de

reutilização  de  componentes,  tempo  gasto,  interações  entre  os  componentes,  etc

(CHANDRAN; DIMOV; PUNNEKKAT, 2010, p. 230). Assim, o projeto dos requisitos e

código da estrutura do software são revistos e a sua execução fornece o desempenho.

Por fim,  outra abordagem para se obter  dados que avaliem a confiabilidade de um

software é  por  meio  do  feedback dos  usuários.  De  modo  diferente,  os  dados  são

obtidos após o lançamento do  software no mercado e refletem a sua real utilização

pelos  usuários.  Por  isso,  diferente  da  abordagem  de  testes,  os  dados  provém  do

comportamento imprevisível do usuário, ao invés de usar um modelo de dados de teste

ou testes planejados. Tipicamente, os dados sobre falhas do sistema são coletados por

relatórios  enviados  pelo  usuário  e,  posteriormente,  cruzados  com a  frequência  dos

relatórios,  a  fim  de  se  estimar  a  quantidade  restante  de  defeitos,  avaliando-se  a

confiabilidade do software.

3.2.1 Modelo de Crescimento de Confiabilidade de Software

Para avaliar a confiabilidade do software, a abordagem mais comum é a utilização de

testes e coleta de dados sobre os resultados de falhas nos testes. Porém, quando os
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dados de falha não estão disponíveis ou quando as falhas não são observadas durante

os testes,  pode-se adotar  uma abordagem de estimação bayesiana para  estimar  a

probabilidade de uma falha surgir (CHANDRAN; DIMOV; PUNNEKKAT, 2010, p. 229).

Segundo Jaffal e Tian (2014, p. 247), para fazer a previsão da quantidade de defeitos

restantes  no  software e o tempo de execução necessário  para as correspondentes

falhas  manifestarem-se,  modelos  matemáticos  podem  ser  usados.  Tais  modelos,

segundo  Ullah,  Morisio  e  Vetro  (2012,  p.  187),  assumem  que  a  confiabilidade  do

software cresce após um defeito ser detectado e consertado. Com essa previsão, é

possível decidir se é válido prosseguir com os testes ou interrompê-los.

Esses  modelos  matemáticos  são  chamados  de  SRGM (Software Reliability  Growth

Model), sendo que Yamada (2014, p. 40) definiu o SRGM como um modelo de análise

matemática com a finalidade de medir e avaliar quantitativamente a confiabilidade do

software. Desta maneira, o SRGM pode ser aplicado durante o processo de projeto,

codificação, integração, testes e após o lançamento do software. No entanto, aplicar um

SRGM durante o projeto e codificação não gera resultados aceitáveis, já que o software

ainda é instável e não possui todas as funcionalidades necessárias, dependendo do

estágio de desenvolvimento.

Embora seja possível executar um SRGM após o lançamento, isto pode ser tardio para

evitar  impactos  negativos  com os  usuários.  Por  isso,  Almering  et  al. (2007,  p.  83)

argumentaram que o momento ideal para executar um SRGM é durante o processo de

testes.

Os modelos de confiabilidade, segundo Ullah, Morisio e Vetro (2012, p. 187), podem ser

classificados de acordo com o tipo de teste de software que é realizado:

– quando o teste considera apenas os requisitos, sem atentar-se à estrutura interna do

software,  o  teste  é  chamado  de  caixa-preta,  sendo  que  este  considera  apenas  o
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resultado da interação do software com os dados de entrada. Por isso, os modelos de

confiabilidade que utilizam dados provenientes deste tipo de teste são chamados de

modelos de confiabilidade do tipo caixa-preta;

– quando o teste considera, além dos requisitos, a estrutura interna e os componentes

do  software, o teste é chamado de caixa-branca e os modelos de confiabilidade que

consideram a estrutura interna do software para estimar a confiabilidade são chamados

de modelos de confiabilidade do tipo caixa-branca.

3.2.2 Modelos de Confiabilidade do Tipo Caixa-Preta

Os modelos de confiabilidade do tipo caixa-preta são classificados em diferentes tipos:

modelos de previsão antecipada, SRGM, modelos baseados no domínio de entrada e

modelos híbridos de caixa-preta (ULLAH; MORISIO; VETRO, 2012, p. 187).

Geralmente, os modelos de caixa-preta são usados quando os dados dos resultados de

teste  ou  informações  sobre  falhas,  tipicamente  provenientes  de  um  feedback de

usuários,  estão  disponíveis.  Sabe-se  que  os  modelos  do  tipo  caixa-preta  usam as

informações de falha do software observadas e fazem previsões sobre falhas futuras,

refletindo, assim, o crescimento da confiabilidade do software.

Segundo  Yamada  (2014),  os  SRGMs  são  classificados  em  três  grandes  grupos:

modelos finitos, modelos infinitos com base no número total de falhas expressas com

tempo infinito e modelos bayesianos. A sua notoriedade dá-se pelo fato de os SRGMs

estão em uso desde início dos anos 1970.
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3.2.3 Modelos de Confiabilidade do Tipo Caixa Branca

De acordo com a forma de apresentação da estrutura interna de sistemas de software,

Chandran, Dimov e Punnekkat (2010, p. 230) dividiram os modelos de confiabilidade do

tipo caixa-branca em três subgrupos principais: modelos baseados em estados finitos,

modelos baseados em caminhos e modelos aditivos.

Também,  utilizando-se  a  abordagem  da  avaliação  de  confiabilidade  do  tipo  caixa-

branca,  há  quatro  passos  básicos:  identificação  de  módulos/componentes  que

constituem o sistema de  software, construção de modelo de arquitetura, definição da

falha de comportamento dos componentes e combinação do modelo de arquitetura com

a definição da falha de comportamento dos componentes.

3.2.4 Modelos Matemáticos

O SRGM é um modelo matemático que especifica a forma geral do processo de falha

de software em função de fatores como a introdução de defeitos, a remoção de defeitos

e o ambiente operacional. Assim, um SRGM é composto por diferentes parâmetros. E,

nesse sentido, parâmetro é determinado como uma constante ou variável arbitrária que

aparece em uma expressão matemática, cada valor do que restringe ou determina a

forma específica de uma expressão.

Sabe-se que a taxa de defeitos, isto é, defeitos por unidade de tempo, de um sistema

de  software é,  geralmente,  decrescente  ao longo do processo de desenvolvimento,

devido ao processo de detecção e remoção de defeitos. Desta maneira, a modelagem

de confiabilidade é feita para estimar a forma da curva da taxa de defeitos por meio de

estimativas estatísticas dos parâmetros associados ao modelo selecionado.
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Segundo Ullah,  Morisio  e  Vetro  (2012,  p.  187),  a  modelagem da curva de taxa de

defeitos tem dois objetivos: estimar o tempo extra de execução necessária de teste

para  atender  a  um  objetivo  específico  de  confiabilidade  e  para  identificar  a

confiabilidade esperada do software quando o produto é liberado.

3.2.4.1 Modelo de Processo Poisson Discreto Não-Homogêneo

Um processo Poisson é um conceito matemático usado, comumente, em estatística e

que representa uma série de eventos aleatórios distribuídos ao longo do tempo. Por

isso,  o  intervalo  de  tempo  entre  dois  eventos  próximos  segue  uma  distribuição

exponencial. Como consequência, o processo Poisson não-homogêneo permite que a

taxa de aparição de eventos varie ao longo do tempo.

Segundo Kapur  et al. (2011,  p.332),  os modelos NHPP (Non-Homogeneous Poison

Process)  descrevem  a  observação  de  falhas  de  software por  meio  de  uma  curva

exponencial. De modo que os modelos utilizam dados observados durante o processo

de  testes,  por  exemplo,  o  tempo  entre  falhas,  para  estimar  o  número  residual  de

defeitos  no  software e o tempo de teste  necessário  para os detectar.  Assim, estes

modelos podem lidar com dados de intervalo e ponto e assumem que a intensidade da

taxa de  falhas  diminuiu  conforme os  defeitos  foram sendo  detectados e  removidos

(ALMERING et al., 2007, p. 83).

A modelagem da  curva  da  taxa  de  defeitos  assume uma forma côncava.  Por  isto,

Almering et al. (2007, p. 83) argumentaram que a forma côncava geral da função está

ligada ao fato de que os defeitos restantes no software são mais sutis e muitas vezes

mais difíceis de se detectar e corrigir e, portanto, demandam mais tempo de testes.
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Os  modelos  NHPP  permitem  distinguir  duas  abordagens  para  a  modelagem  da

confiabilidade. Modelos finitos de defeitos partem do pressuposto de que o  software

possui um número finito de defeitos e, eventualmente, pode ficar livre de defeitos. Em

tais modelos, a curva de taxa de defeitos aproxima-se de um valor finito.  Mas, nos

modelos  infinitos,  assume-se  que  o  número  de  defeitos  observados  é  infinito

(ALMERING et al., 2007, p. 83).

3.3 Utilização de Um Fator

No  contexto  de  utilização  de  SRGM,  as  métricas  empregadas  pelo  modelo  são

chamadas de fatores. E, dentre os diversos SRGM que foram propostos, os primeiros

modelos  usavam  uma  única  métrica  como  parâmetro  para  a  avaliação  de

confiabilidade.

A maioria  dos  SRGMs  baseados  em  NHPP concentra-se  apenas  nos  eventos  de

detecção de defeitos  e  remoção durante  a fase de testes.  Quando se  estimam os

parâmetros do modelo de SRGMs baseados em NHPP é necessário adquirir somente o

tempo de detecção de falha ou o número de falhas detectadas durante o período de

testes.

Embora tais modelos sejam fáceis de se manusear, Okamura, Etani e Dohi (2010, p.

31)  afirmaram  que  esses  parâmetros  nem  sempre  são  precisos  devido  à  falta  de

informação estatística.
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3.3.1 Utilização de Dois Fatores

Modelos que utilizam dois fatores apresentam melhor desempenho ao fazer previsões

de confiabilidade. Okamura, Etani e Dohi (2010, p. 31) argumentaram que isso se deve

ao fato que, dada as possíveis dificuldades em se obter os dados, o modelo que se

utiliza somente de um fator não consegue fazer uma previsão de boa qualidade. Huang,

Kuo e Lyu (2007, p. 198) confirmaram isso, demonstrando o desempenho superior de

modelos  que  se  utilizaram  de  dois  fatores  para  a  modelagem  de  confiabilidade,

empregando-se a combinação do esforço de teste como uma métrica e o processo de

depuração imperfeita, onde o processo de remoção de defeito introduz novos defeitos.

Por fim, Wang, Hemminger e Tang (2007, p. 411) buscaram incorporar a estrutura do

software como  um  fator  de  influência,  mensurando  a  confiabilidade  de  cada

componente  na previsão de confiabilidade do  software como um todo.  Singh  et  al.

(2007, p. 360) consideraram a dependência entre defeitos, isto é, não encarando cada

defeito como independente de outros defeitos, mas sim, relações entre defeitos, que

provocam um efeito em cascata.

3.3.2 Agregação de Mais de Dois Fatores

O aumento de métricas utilizadas, no entanto, aumenta a incerteza na hora de se obter

as próprias medidas. Isto acaba afetando a previsão de confiabilidade (LI; XIE; HUING,

2010, p. 3560), mesmo que existam maneiras de se determinar o grau de incerteza

dentro de uma previsão de confiabilidade (CHANDRAN; DIMOV; PUNNEKKAT, 2010, p.

227).
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Okamura, Etani e Dohi (2010, p. 32) abordaram a questão da incerteza no momento de

obtenção  das  medidas,  utilizando  técnicas  estatísticas  para  gerar  um  SRGM  mais

simples  e,  consequentemente,  com  um  nível  menor  de  incerteza  na  previsão  de

confiabilidade. Por sua vez, Quadri, Ahmad e Faroog (2011, p. 27) apresentaram um

modelo  onde  o  esforço  de  teste  segue  uma  distribuição  exponencial  generalizada,

assumindo-se  que  a  taxa  de  surgimento  de  defeitos  e  o  esforço  de  teste  são

proporcionais à quantidade restante de defeitos no software. Já Kapur  et al. (2011, p.

333) observaram que a remoção de um defeito, por si só, pode provocar o surgimento

de  outros  defeitos,  notando-se  que  a  quantidade  de  defeitos  removidos,  não

necessariamente, corresponde a mesma de defeitos observados. Por fim, Peng  et al.

(2014, p. 38) consideraram o esforço de detecção de defeitos e o esforço de correção

de defeitos como dois fatores distintos que podem ser incorporados em outros SRGM.

3.4 Incerteza Limite

Um SRGM é uma ferramenta crítica para controlar a qualidade do software. No entanto,

segundo  Okamura  e  Dohi  (2008,  p.  19),  tais  modelos  enfrentam  dificuldades  em

representar  exatamente,  por  meio  de  modelos  matemáticos,  o  crescimento  da

confiabilidade de software no mundo real. Além disso, segundo levantamento feito por

Almering  et  al. (2007),  nenhum SRGM proposto  consegue cobrir  todos os cenários

possíveis  de  desenvolvimento  de  software.  Por  isso,  tal  característica  vai  além da

relação  intrínseca  entre  a  confiabilidade  e  o  cenário  de  execução,  de  modo  que

diferentes  domínios  de  software apresentam dinâmicas  distintas  durante  a  fase  de

testes.

Sabe-se que a confiabilidade é fortemente dependente da maneira como o sistema será

utilizado. Assim, uma vez que a confiabilidade e disponibilidade são características de

execução, o impacto de defeitos na confiabilidade pode variar dependendo da forma
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como é  utilizado  o  sistema,  isto  é,  a  frequência  com que  a  parte  do  sistema que

apresenta  defeito  será  executada.  Portanto,  a  análise  de  diferentes  formas  e

frequências para executar o sistema é um desafio para a previsão de confiabilidade do

software,  especialmente  quando  o  perfil  de  seu  uso  não  é  conhecido  de  antemão

(IMMONEN; NIEMELA, 2007, p. 50).

Dentre alguns fatores,  os que influenciam a incerteza incluem as características de

software como:  a  complexidade  do  programa,  a  cobertura  de  teste,  ambiente  de

desenvolvimento e muitos outros, que aparecem durante o ciclo de desenvolvimento

(CHANDRAN; DIMOV; PUNNEKKAT, 2010, p. 228).

Vale  destacar  que a maioria  desses problemas aparecem,  principalmente,  devido à

incerteza envolvida em parâmetros de confiabilidade.  Já os fatores, que contribuem

para a estimativa de confiabilidade de software, devem ser identificados (CHANDRAN;

DIMOV; PUNNEKKAT, 2010. p. 227).

Portanto, é necessário um cuidado extra para se determinar o modelo mais adequado a

ser aplicado, pois escolhendo-se um modelo inadequado pode-se fornecer dados que

resultem  em  decisões  equivocadas  dentro  de  um  projeto  de  desenvolvimento  de

software (ULLAH; MORISIO; VETRO, 2012, p. 189).

3.5 Depuração Imperfeita

A maioria  dos  modelos  de  crescimento  de  confiabilidade  software propostas  são

baseadas  na  suposição  de  depuração  perfeita,  ou  seja,  que  todos  os  defeitos

detectados  durante  as  fases  de  teste  e  operação  são  corrigidos  e  removidos

perfeitamente.
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Peng  et al.  (2014, p. 38) argumentaram que as ações de depuração no ambiente de

teste e ambiente de operação não são sempre realizadas perfeitamente. Por exemplo,

erros de digitação invalidam a atividade de correção de defeito ou a remoção do defeito

não é realizada corretamente devido à análise incorreta dos resultados dos testes. Além

disso, o processo de depuração é, geralmente, longe de ser perfeito. Também, muitos

defeitos detectados pelos clientes são introduzidos durante a depuração.

Além  da  depuração  imperfeita  em  atividades  de  correção  de  defeitos,  é  preciso

considerar a possibilidade de introduzir novos defeitos no processo de depuração. Por

isso, dois tipos de falhas de software existem nas fases de teste ou operação: falhas de

software causados por defeitos originalmente latentes no sistema de software antes do

teste (que são chamados defeitos inerentes) e falhas de software causados por defeitos

introduzidos durante a operação de software devido à depuração imperfeita.

Geralmente, recursos de teste não são constantemente alocados durante a fase de

teste de software que, em grande parte, pode influenciar a taxa de detecção de falhas e

o  tempo  necessário  para  corrigi-las.  Por  exemplo,  o  depurador  pode  passar  uma

semana  sem  fazer  qualquer  trabalho  de  teste  e  trabalhar  intensamente  nos  dias

seguintes.  Além disso,  é  natural  que  os  depuradores  cometam erros  e  introduzam

novos defeitos durante os testes. Pois, eles tendem a introduzir mais defeitos quanto

mais esforço é despendido nos teste, visto que o código sofreu mais mudanças (PENG

et al. 2014, p. 42).

3.6 Taxa de Remoção de Defeitos

Sob a hipótese ideal de remoção instantânea e perfeita de defeitos, o número esperado

de defeitos removidos é o mesmo que o número esperado de defeitos detectados.

Gokhale, Lyu e Trivendi (2004, p. 222) argumentaram que, se leva-se ao se levar em
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consideração o tempo necessário  para  a remoção,  o  número esperado de defeitos

removidos,  em qualquer  momento,  dado é inferior  ao número esperado de defeitos

detectados.

Por isso, a detecção de um defeito gera um impacto no processo de software, já que é

preciso dispor  de um tempo extra para a correção do mesmo. Assim, quanto mais

complexo for o defeito localizado, maior é será o esforço e maior a probabilidade de

introdução de novos defeitos.

Essa relação é denominada taxa de remoção de defeitos. A real taxa de defeitos no

software, (levando em conta a remoção explícita de defeitos), é maior do que a taxa

aparente de defeitos, quando não se é levado em consideração os efeitos do processo

de remoção do defeito. Com base nisto, Gokhale, Lyu e Trivedi (2004) argumentam

que, com base nisso a confiabilidade estimada, sem levar em consideração a taxa de

remoção de defeitos, leva a uma estimativa que tende a ser otimista,  ou seja, uma

confiabilidade prevista maior do que a observada na prática.

3.7 Considerações do Capítulo

Um SRGM é um modelo matemático usado para prever quantos defeitos ainda existem

e permitir a tomada de decisão de parar os testes e lançar o produto. Para tanto, é

preciso escolher o modelo mais adequado para o software em questão, bem como as

métricas  a  serem utilizadas.  Mesmo tendo  em mãos  as  métricas  necessárias  para

utilizar um determinado SRGM, é preciso também levar  em consideração o tipo de

cenário para o qual o modelo foi pensado.
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Ao se propor a utilização de um SRGM, é preciso considerar a necessidade de se

encontrar  um equilíbrio  entre o esforço para realizar  as medições para  alimentar  o

SRGM e a qualidade da previsão que o modelo consegue gerar.

Por conta dessas características, muitas vezes recorre-se a um especialista da área,

seja para escolher o modelo ideal ou para se obter uma “segunda opinião” sobre a

previsão de confiabilidade (ALMERING et al. 2007, p. 87).
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4. MODELO CAI-LYU E MÉTODO DE GOKHALE

Cai e Lyu (2007, p. 17) consideraram a cobertura de código durante a execução dos

testes  como  uma  métrica  relevante  para  melhorar  o  desempenho  de  previsão  de

confiabilidade. Também, Cai e Lyu (2007, p. 18) relacionaram a cobertura de código

com a passagem de tempo.

Por  sua  vez,  Gokhale,  Lyu  e  Trivedi  (1994,  p.  218)  argumentaram que  a  taxa  de

remoção de defeitos de software afeta taxa de defeitos detectados e, portanto, deve ser

considerada ao estimar a confiabilidade de um software.

4.1 Modelo Cai-Lyu

Visando-se melhorar  a  capacidade de previsão de confiabilidade,  Cai  e  Lyu (2007)

propuseram a utilização de dois fatores  para calcular a confiabilidade do  software: o

índice de cobertura de código aplicado sobre um modelo de curva e a quantidade de

defeitos detectados ao longo do tempo aplicado sobre um modelo de curva. Cai e Lyu

(2007) afirmaram que o modelo proposto permite usar quaisquer modelos padrões de

curva,  dando  grande flexibilidade para  experimentar  curvas diferentes.  No  presente

trabalho, o modelo proposto por Cai é chamado de modelo Cai-Lyu.

No  modelo  de  confiabilidade de  software de  dois  fatores,  relaciona-se o  tempo de

execução de testes entre a detecção de falhas e a quantidade de casos de testes

executados em relação ao total de casos de teste.

Cai  e  Lyu  (2007)  afirmaram  que  a  confiabilidade  depende  do  conjunto  de  testes

executados, de modo que a ordem com que os testes são executados influencia a

geração da curva de predição de confiabilidade.
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Vale destacar que a confiabilidade é composta por duas estimativas: uma da cobertura

de teste e do tempo de execução. Por isso, o modelo Cai-Lyu foca nos modelos para

estimativa da cobertura de teste. Já a estimativa do tempo de execução pode vir de

outros SRGM. Assim, Cai e Lyu (2007) usaram dois modelos simplificados para obter a

estimativa da cobertura de teste: modelos hiper-exponencial e modelo beta.

A relação entre a cobertura de teste e detecção de falhas é modelada usando-se NHPP.

Desta maneira, Cai e Lyu (2007) propuseram utilizar a relação entre a cobertura de

testes  e  tempo  como  parâmetros  de  correção  para  outros  modelos.  Esses  dois

parâmetros  foram modelados  usando-se  NHPP,  onde  Os  autores  usaram  NHPP e

exponencial para demonstrar a utilização do modelo proposto.

α1(1−℮-γ1c) F1(t) + α2(1−℮-γ2t) F2(c)

Onde, F1(t) e F2(c) podem ser modelos tradicionais.

A cobertura de código é mensurada conforme os testes são realizados. A variável c vai

de 0 a 1, 1 indicando cobertura total do código.

O  modelo  Cai-Lyu  parte  do  pressuposto  que  a  remoção  de  defeitos  é  perfeita  e

instantânea,  ou seja,  o  processo de remoção de defeitos  remove completamente o

defeito e não introduz novos defeitos, bem como o processo é instantâneo e não é

contabilizado dentro do tempo de testes.



42

4.2 Estudo de Caso do Modelo Cai-Lyu

Para demonstrar a eficácia do modelo, Cai e Lyu (2007) utilizaram os dados obtidos em

um projeto realizado na Universidade de Hong-Kong em 2002,  chamado de projeto

CUHK-RSDIMU.  Este  consistiu  em  formar  34  equipes  independentes  de

desenvolvimento com os alunos de graduação, que foram responsáveis por analisar,

codificar,  testar,  avaliar  e  documentar  um  software de  sistema  crítico  da  área  de

aeronáutica.

Durante os quatro meses de duração do projeto,  os dados acerca dos testes e da

cobertura de código foram armazenados, sendo que cada equipe de desenvolvimento

tinha que usar um  software de controle de versão para registrar todas as alterações

feitas no código-fonte.

Utilizando-se  o  controlador  de  versão,  Cai  e  Lyu  (2007)  geraram  variações  dos

softwares desenvolvidos,  chamados  de  mutantes,  emulando  assim  os  possíveis

defeitos encontrados.  Desta forma,  os defeitos presentes em todos os projetos dos

estudantes foram analisados como um único projeto. Na sequência, um programa foi

desenvolvido para testar todos os mutantes contra os testes do enunciado original e os

dados foram coletados. Por fim, com a massa de dados, Cai e Lyu (2007) compararam

a  estimativa  de  confiabilidade  gerada  pelo  modelo  Cai-Lyu  com  outros  modelos,

atestando o melhor desempenho do modelo Cai-Lyu por contemplar a cobertura de

código.

Dentro da mesma comparação, Cai e Lyu (2007) utilizaram modelos diversos para F1(t)

e  F2(c).  Eles  também  constataram  uma  variação  considerável  no  desempenho  de

estimativa de confiabilidade.
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4.3 Limites do Modelo Cai-Lyu

O modelo de Cai (CAI; LYU, 2007) foi testado contra uma base de dados elaborada em

um ambiente  acadêmico,  como  resultado  de  um programa  empregando  alunos  de

graduação.  Como tal,  é  importante  ressaltar  a  necessidade de comparar  o  modelo

proposto com dados de projetos elaborados em ambientes corporativos,  testando o

modelo contra outras dinâmicas de desenvolvimento e testes.

Cai e Lyu (2007) também salientaram que a escolha dos modelos para F1(t) e F2(c)

afeta  o  desempenho  da  estimativa  final.  Outro  fator  limitante,  mencionado  pelos

próprios autores, foi a necessidade de coletar uma quantidade maior de dados durante

a fase de testes, no caso a cobertura de código. Porém, esta informação nem sempre

está disponível em outros projetos.

4.4 Método de Gokhale

Gokhale, Lyu e Trivedi (2004, p. 218) propuseram considerar o impacto que a correção

de defeitos detectados causa no processo de testes e na confiabilidade do software. O

argumento  é  que,  enquanto  um  modelo  de  confiabilidade  pode  utilizar  a  taxa  de

detecção de defeitos para aferir a quantidade de defeitos remanescentes no software,

essa métrica assume a correção instantânea e perfeita de defeitos.

Assim, segundo esses pesquisadores (2004), a taxa de defeitos detectados acaba por

ser  uma métrica  otimista,  por  não levar  em consideração o tempo necessário  para

corrigir os defeitos detectados. Eles também defenderam duas linhas para modelar a

relação entre a taxa de falhas detectadas e os defeitos corrigidos.
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A primeira linha assume que a taxa de defeitos removidos é constante,  isto é,  não

dependem da taxa de detecção de defeitos:

α(1 − ℮-βt)

A segunda  linha  trata  de  defeitos  latentes,  isto  é,  ao  se  remover  um  defeito,  o

desenvolvedor  acaba  corrigindo  também  outras  partes  relacionadas  com  o  defeito

detectado,  mas que ainda não se  traduziram em defeitos detectados.  Por  isso,  Os

defeitos latentes são, inerentemente, mais difíceis de se remover:

α℮-βt

Cabe salientar que a equação para taxa de remoção de defeitos, considerando-se os

defeitos latentes, foi apresentada por Gokhale, Lyu e Trivedi (2004, p.218 ) como uma

hipótese. 

Para efeitos de avaliação, o presente trabalho utilizou a equação para taxa constante

de remoção de defeitos.

4.5 Considerações do Capítulo

Cai e Lyu (2007) apresentaram um SRGM flexível, baseado na cobertura de código e o

tempo de execução de testes. Utilizando um estudo de caso, Cai e Lyu demonstraram

que o SRGM apresentado produzia uma estimativa de crescimento de confiabilidade

melhor  do  que  outros  modelos  que  não  utilizam  a  cobertura  de  código.  Em

contrapartida, o modelo de Cai e Lyu parte do pressuposto que defeitos são detectados

e corrigidos instantâneamente, sem a inserção de novos defeitos.
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Visando endereçar  este tipo de pressuposto,  Gokhale,  Lyu e Trivedi  (2004,  p.  218)

propôem um método para levar em consideração o impacto que o processo de correção

de  defeitos  produz  na  taxa  de  detecção  de  defeitos.   Gokhale,  Lyu  e  Trivedi

argumentam que, ao considerar a taxa de correção de defeitos, é possível  produzir

estimativas de crescimento de confiabilidade mais realistas.



46

5. MODELO PROPOSTO

Conforme  discutido  o  capítulo  3.7,  a  escolha  de  um  SRGM  para  utilização  num

determinado projeto de software deve levar em consideração o tipo de cenário para o

qual o modelo foi pensado. Por conta disso, a escolha do SRGM mais adequado é mais

trabalhosa e pode demandar a opinião de um especialista para a escolha do modelo a

ser usado (ALMERING et al. 2007, p. 87).

Neste  contexto,  o  modelo  Cai-Lyu  mostra-se  bastante  promissor  por  conta  de  sua

flexibilidade e da extensa comparação com outros modelos (CAI; LYU, 2007, p. 24). De

acordo com os autores, a relação da cobertura de testes com o tempo de execução dos

testes é o diferencial do modelo e a razão para o desempenho superior em comparação

com outros modelos.

A flexibilidade do modelo  Cai-Lyu pode mitigar  o  problema de escolher  um modelo

adequado a um projeto de software. Porém, no levantamento bibliográfico do presente

trabalho,  não  foram  encontrados  novos  desdobramentos  do  modelo  Cai-Lyu,

especificamente no pressuposto assumido pelos autores, que os defeitos são corrigidos

instantaneamente  e,  portanto,  o  processo  de  remoção  de  defeitos  não  afeta  a

estimativa de confiabilidade do software (CAI; LYU, 2007, p. 18).

Além deste fato,  observa-se que o modelo Cai-Lyu foi  utilizado com uma massa de

dados de um projeto executado em ambiente universitário. Cabe, então, averiguar qual

seria  o  desempenho  do  modelo  Cai-Lyu  utilizando-se  os  dados  de  um  projeto

executado fora  do ambiente  controlado por  uma universidade.  Mais  do que isso,  é

interessante  verificar  que  o  pressuposto  sobre  o  processo  de  remoção  de  defeitos

mantém-se verdadeiro durante a aplicação em um estudo de caso.
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O estudo de caso apresentado por Cai e Lyu não apresenta a remoção de defeitos, por

tratar-se da análise de projetos previamente finalizados, portanto tornando a taxa de

remoção de defeitos irrelevante para a análise apresentada pelos autores.

Por conta da flexibilidade do modelo Cay-Lyu e por  conta do foco na cobertura de

código, é possível utilizar um modelo matemático que leve em conta a taxa de remoção

de defeitos para a estimativa do tempo de execução dos testes.

Durante  o  levantamento  bibliográfico  do  presente  trabalho,  não  foram  encontrados

artigos apoiando ou refutando, por meio de um estudo de caso, a utilização da taxa de

remoção de defeitos  como um fator  relevante para  a previsão da confiabilidade de

software, conforme proposto por Gokhale, Lyu e Trivedi (2004). É plausível assumir que

o tempo necessário para corrigir os defeitos afeta o processo de detecção de novos

defeitos, além da contagem de detecção de defeitos não levar em consideração os

defeitos  que  ainda  estão  na  fila  para  serem corrigidos  (GOKHALE;  LYU;  TRIVEDI,

2004, p. 228).

Este trabalho propôs-se a combinar o modelo de Cai-Lyu com o método de Gokhale

para constatar a influência que a taxa de remoção de defeitos tem sobre um modelo de

previsão de confiabilidade.

Gokhale, Lyu e Trivedi (2004) apresentaram dois métodos para relacionar os defeitos

detectados e os defeitos corrigidos em um dado instante t. O primeiro método modela a

taxa de defeitos corrigidos usando uma curva NHPP. O segundo método busca modelar

defeitos  latentes,  ou  seja,  defeitos  que  ainda  não  foram  detectados,  porém  são

corrigidos durante a correção de um determinado defeito.
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Como o método proposto por Gokhale, Lyu e Trivedi (2004) para taxa de remoção de

defeitos  latentes  é  hipotética,  o  presente  trabalho não a  utiliza,  a  fim de facilitar  a

análise dos resultados.

Sendo assim, o modelo de Cai-Lyu,

α1(1−℮-γ1c) F1(t) + α2(1−℮-γ2t) F2(c)

foi  utilizado na sua forma original,  empregando-se o método de Gokhale para  taxa

constante de remoção de defeitos como F1(t). Para F2(c), foi utilizada uma distribuição

NHPP em relação à cobertura de código em função do tempo.

O  modelo  proposto  utiliza  NHPP para  a  cobertura  de  código,  de  modo  a  manter

uniformidade com o modelo NHPP utilizado no método de Gokhale.

O modelo resultante foi chamado de Cai-Gokhale.
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6. APLICAÇÃO E ANÁLISE

Para avaliar o modelo proposto, foram usados os dados de um sistema desenvolvido

pela  Secretaria  de  Tecnologia  de  Informação  –  SETI,  Subsecretaria  de

Desenvolvimento e Manutenção de Sistemas – UDEM, do Tribunal Regional Federal da

3ª Região.

O  sistema  desenvolvido  tem  como  objetivo  integrar  dois  sistemas  legados,

implementando um sistema de workflow.

A relação dos módulos e correspondentes testes está listada no Anexo 1.  No entanto,

as partes sensíveis dos dados foram omitidas.

Para a fase de testes do sistema, foram usadas 812 horas, aplicando-se 146 testes.

Como resultado, foram detectados 55 defeitos. E, para efetuar os testes e análises dos

modelos  propostos,  foi  utilizado  o  programa  RGA versão  10  da  suíte  de  software

Reliasoft.

Na  Figura  1  é  possível  observar  que  a  curva  formada  possui  um  pico  de  falhas

acumuladas x vs tempo, após 400 h de testes. Isto ocorreu porque neste período foram

iniciados os testes do módulo M12 e,  consequentemente,  a  correção dos primeiros

defeitos desencadeou alterações profundas em outras partes do código que já tinham

sido testadas previamente,  o  que gerou retrabalho nos testes.  Como foi  explanado

anteriormente, este é um comportamento não previsto no modelo Cai-Lyu, o que torna

este estudo de caso particularmente interessante para análise e discussão.
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Figura 1 – Curva de falhas acumuladas durante a fase de testes 

Fonte: Autor

Utilizando-se  a  relação  de  módulos  e  funcionalidades  implementadas,  foi  possível

mapear a cobertura de código em cada teste. Nota-se que um determinado trecho de

código  pode  ser  executado  por  mais  de  um  teste.  Segundo  o  desenvolvedor

responsável  pelo  projeto,  foi  do  entendimento  do setor  de  desenvolvimento  que os

trechos comuns de código somente seriam considerados cobertos depois que todas as

funcionalidades que fizessem referência ao dito trecho fossem executados.
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Assim, para adequar os dados obtidos de modo a utilizar os modelos propostos, foram

calculadas as horas acumuladas de teste e as falhas acumuladas detectadas. Por isso,

foi usado o Método dos Quadrados Mínimos (YAMADA, 2014, p. 31) para determinar os

parâmetros necessários para a execução dos modelos.

beta: 0.523160

alfa: 0.504302

Para os modelos de taxa de defeitos encontrados, F1(t), e cobertura de código, F2(c),

necessários para utilizar o modelo Cai-Lyu, foi usado o modelo NHPP.

Na Figura 2, é possível verificar a comparação entre a curva de falhas acumuladas

durante a fase de testes e a curva de estimativa gerada pelo modelo Cai-Lyu.
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Figura 2 – Curva do modelo Cai-Lyu (vermelho) em relação à curva de falhas

acumuladas (azul)

Fonte: Autor

Calculando-se a área formada pelas curvas de falhas acumuladas e a curva formada

pelo modelo Cai-Lyu, é possível quantificar quão próximo a previsão do modelo chegou

da realidade (YAMADA, 2014, p. 58). Neste caso, a área formada pela curva de falhas e

o modelo Cai-Lyu é de 7,02 horas por falha detectada, isto é, o modelo Cai-Lyu prevê
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um esforço de horas de teste por falha detectada 7,02 horas menor do que o observado

na curva de falhas acumuladas.

Na Figura 3, é possível observar a comparação entre a curva de falhas acumuladas

durante a fase de testes e a curva de estimativa gerada pelo modelo Cai-Gokhale.

Figura 3 – Curva do modelo Cai-Gokhale (verde) em relação à curva de falhas

acumuladas (azul)

Fonte: Autor
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A área formada pela curva de falhas e o modelo Cai-Gokhale é 9,26 horas por falha

detectada, isto é, o modelo Cai-Gokhale prevê um esforço de testes de 9,26 horas a

mais do que o observado na curva de falhas acumuladas.

Utilizando-se somente a área formada pelos modelos,  seria possível  concluir  que o

modelo  Cai-Lyu  possui  um  desempenho  melhor  do  que  o  modelo  Cai-Gokhale:  a

diferença entre o esforço previsto pelo modelo Cai-Lyu em relação ao observado na

prática é menor do que a diferença entre o esforço previsto pelo modelo Cai-Gokhale

em relação ao observado na prática.

Além disso, é possível observar o efeito do método de Gokhale em ação, ao gerar uma

previsão mais pessimista, prevendo um esforço maior de horas de teste, onde o modelo

Cai-Lyu prevê um esforço menor do que o observado na prática.

Como a diferença entre os dois é a utilização do método de Gokhale, à primeira vista,

tem-se a impressão que a utilização da taxa de remoção de defeitos como fator em um

SRGM  não  melhora  o  desempenho  da  estimativa  de  confiabilidade.  No  entanto,  é

possível tirar mais conclusões após analisar o gráfico dividido em regiões. Para facilitar

a análise, o gráfico foi dividido em quatro regiões, conforme está apresentado na Figura

4.
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Figura 4 – Regiões de interesse para análise da curva de falhas  acumuladas

Fonte: Autor

O gráfico  apresentado  na  Figura  4  foi  dividido  em quatro  regiões  para  ressaltar  a

diferença de desempenho entre as previsões dos modelo Cai-Lyu e Cai-Gokhale.

Em cada região, foi considerada a área formada entre a curva de falhas acumuladas e

os modelos aqui analisados.
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A Região 1, que comprime os dados das primeiras 180 h de teste, apresenta uma área

de 4,36 horas de diferença por falha detectada entre a curva de falhas e o modelo Cai-

Lyu. Já contra uma área de 5,62 horas de diferença por falha detectada entre a curva

de falhas e o modelo Cai-Gokhale.

A Região 2 corresponde aos dados coletados entre 180 h e 360 h de teste.  Nesta

região, a área entre a curva de falhas e o modelo Cai-Lyu é 3,54 horas de diferença por

falha detectada, contra uma área de 11,67 horas de diferença por falha detectada entre

a curva de falhas e o modelo Cai-Gokhale.

A Região 3 é a de maior interesse para esta análise, pois representa um pico de falhas

acumuladas, decorrentes do início dos testes do módulo denominado M12 (vide Anexo

1), sendo que ela comprime os dados coletados entre as marcas de 360 h e 540 h de

testes.

Observa-se que nesta região o modelo Cai-Gokhale possui um desempenho melhor,

justamente por conta da abordagem “pessimista” do método de Gokhale, de modo que

a área entre a curva de falhas e o modelo Cai-Lyu é 14,22 horas de diferença por falha

detectada, contra uma área de 6,77 horas de diferença por falha detectada do modelo

Cai-Gokhale em relação à curva de falhas.

A Região 4 compreende os dados coletados entre as marcas de 540 h e 816 h de teste.

Nesta região, o modelo Cai-Lyu volta a ter um desempenho melhor, apresentando uma

área de 6,37 horas de diferença por falha detectada em relação à curva de falhas,

contra  uma área  de  11,41  horas  de  diferença  por  falha  detectada  do  modelo  Cai-

Gokhale em relação à curva de falhas.
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Conclui-se que o modelo de Cai-Lyu possui melhor aproximação com a realidade no

começo, porém este modelo ajusta a curva conforme a cobertura de testes e o tempo

de execução, não levando em conta o repentino aumento da taxa de detecção de falhas

no começo dos testes de M12.

Comparando-se  as  curvas  geradas  pelo  modelo  Cai-Lyu  e  Cai-Gokhale,  é  possível

observar que o primeiro de fato gerou uma estimativa mais otimista, possivelmente por

não levar em consideração o processo de remoção de defeitos. Sendo que esse efeito

confirma a observação de Gokhale, Lyu e Trivedi (2004, p. 228).

A abordagem mais “pessimista” do método de Gokhale pode ser observada na curva do

modelo Cai-Gokhale, onde somente o pico de detecções de falhas na Região 3 supera

a previsão do modelo.
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7. CONSIDERAÇÕES FINAIS

O objetivo do trabalho foi avaliar a influência que o impacto dos defeitos encontrados

exerce  sobre  o  software no  processo  de  previsão  de  confiabilidade  do  software.

Também, o SRGM proposto por Cai e Lyu, juntamente com o método proposto por

Gokhale, Lyu e Trivedi para calcular a taxa de remoção de defeitos foram combinados.

O modelo resultante foi chamado de modelo Cai-Gokhale e este foi aplicado em um

estudo  de  caso  de  software de  workflow desenvolvido  por  uma  instituição  pública

brasileira.  A  influência  da  taxa  de  remoção  de  defeitos  sobre  a  previsão  de

confiabilidade foi discutida.

Este trabalho verificou a relevância do tempo de correção de defeitos como métrica

junto da métrica de cobertura de código para avaliar a confiabilidade de software. Para

tal, utilizou-se um estudo de caso recente no Brasil, fora do ambiente controlado por

trabalho acadêmico.

7.1 Conclusões

Ao comparar os resultados obtidos pelo modelo Cai-Lyu e o modelo proposto por este

trabalho, chamado Cai-Gokhale, averiguou-se que o modelo Cai-Lyu representa melhor

a curva de dados. Porém, a exceção ocorre na Região 3, onde o modelo Cai-Lyu não

acompanha o repentino aumento de detecção de falhas.

Deste modo, concluiu-se que a utilização da métrica de tempo de correção de defeitos

detectados no SRGM não resultou em uma melhoria na previsão de crescimento da

confiabilidade do  software. Por outro lado, o fato da curva gerada pelo modelo Cai-

Gokhale acompanhar o repentino aumento na taxa de falhas, na Região 3, indica um

potencial para futuros trabalhos.
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7.2 Contribuições do Trabalho

Este trabalho constatou que o tempo de remoção de defeitos, de fato, exerce impacto

na taxa de detecção de defeitos. Para tal, criou-se um modelo híbrido, utilizando-se a

flexibilidade do modelo Cai-Lyu com a possibilidade de levar em consideração o tempo

de remoção de defeitos.

Durante o estudo de caso,  foi  possível  observar que a previsão de crescimento de

confiabilidade do software mostrou-se pessimista, isto é, superestimando os possíveis

defeitos ainda não detectados. Esta característica é exatamente descrita por Gokhale,

Lyu  e  Trivedi  (2004,  p.  228).  Sendo  assim,  o  modelo  proposto  Cai-Gokhale  une  a

flexibilidade do modelo Cai-Lyu, que permite utilizar outros modelos de acordo com a

necessidade do projeto em questão, com a “prudência” do método de Gokhale, Lyu e

Trivedi.

Já a flexibilidade do modelo Cai-Lyu é, particularmente, interessante porque mitiga a

limitação dos SRGM de não serem capazes de cobrir todos os cenários de projeto de

software,  sendo necessária  a seleção de um modelo  adequado (ALMERING  et  al.,

2007,  p.  87;  IMMONEN;  NIEMELA,  2007,  p.  49).  Em  contrapartida,  o  método  de

Gokhale, Lyu e Trivedi (2007) mitiga possíveis previsões “otimistas”, que correm o risco

de subestimar a quantidade real de defeitos restantes no software.

7.3 Trabalhos Futuros

Para trabalhos futuros, existe a possibilidade de se empregar outros modelos ou curvas

a fim de averiguar se a diferença entre falhas acumuladas e falhas corrigidas pode ser

expressa por outras curvas, além da NHPP, proposta por Gokhale. Como se sabe, o

modelo  de  Cai-Lyu  abre  possibilidade  para  várias  explorações,  por  conta  de  sua
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flexibilidade  para  escolha  de  modelos  para  F1(t)  e  F2(c).  Enquanto  o  método  de

Gokhale, para modelagem de correção de defeitos latentes, também abre espaço para

maiores explorações.

Outro  aspecto  a  ser  considerado,  é  a  maneira  como  a  cobertura  de  código  é

mensurada. No estudo de caso aqui empregado, foi feito um mapeamento prévio dos

testes,  onde  uma  função  foi  considerada  coberta  pelos  testes  depois  que  fossem

executados todos os testes que poderiam executar aquela função.

Portanto, uma consequência da utilização da cobertura de código como fator é que se

parte do pressuposto que a cobertura de código é sempre crescente. Isto poderia ser

questionado neste estudo de caso, pois o pico de detecção de defeitos na Região 3,

possivelmente,  implicou  em  alteração  de  códigos  que  já  tinham  sido  testados

previamente, e precisaram ser testados novamente. Segundo a sistemática adotada por

Cai e Lyu (2007), a cobertura de testes não retrocede de acordo com as correções

feitas.

Desta maneira, este é um potencial tema para futuros trabalhos, já que o retrocesso na

cobertura de códigos foi aplicado neste estudo de caso. Assim, de modo a facilitar e

incentivar futuras explorações, os dados do estudo de caso utilizados na análise deste

trabalho encontram-se nos anexos para consulta.
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ANEXOS

Anexo 1 – Relação de módulos e casos de uso do sistema usado no estudo de caso
Módulo Caso de uso
M1 UC-1

UC-2
UC-3
UC-4
UC-5
UC-6
UC-7
UC-8
UC-9
UC-10
UC-11
UC-12

M2 UC-13
UC-14
UC-15
UC-16
UC-17
UC-18
UC-19
UC-20
UC-21
UC-22
UC-23
UC-24
UC-25
UC-26
UC-27
UC-28

M3 UC-29
UC-30
UC-31
UC-32
UC-33
UC-34
UC-35
UC-36
UC-37
UC-38
UC-39
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Anexo 1 (continuação) – Relação de módulos e casos de uso do sistema usado no
estudo de caso
Módulo Caso de uso
M4 UC-40

UC-41
UC-42
UC-43
UC-44
UC-45
UC-46
UC-47

M5 UC-48
UC-49
UC-50
UC-51
UC-52
UC-53
UC-54
UC-55
UC-56
UC-57
UC-58
UC-59
UC-60
UC-61
UC-62
UC-63
UC-64
UC-65
UC-66

M6 UC-67
UC-68
UC-69
UC-70
UC-71
UC-72
UC-73
UC-74
UC-75

M7 UC-76
UC-77
UC-78
UC-79
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Anexo 1 (continuação) – Relação de módulos e casos de uso do sistema usado no
estudo de caso
Módulo Caso de uso

UC-80
UC-81
UC-82
UC-83
UC-84

M8 UC-85
UC-86
UC-87
UC-88
UC-89
UC-90
UC-91
UC-92
UC-93
UC-94
UC-95

M9 UC-96
UC-97
UC-98
UC-99

M10 UC-100
UC-101
UC-102
UC-103
UC-104
UC-105
UC-106
UC-107
UC-108
UC-109
UC-110
UC-111
UC-112
UC-113

M11 UC-114
UC-115
UC-116
UC-117
UC-118
UC-119
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Anexo 1 (conclusão) – Relação de módulos e casos de uso do sistema usado no estudo
de caso
Módulo Caso de uso

UC-120
UC-121
UC-122
UC-123
UC-124
UC-125
UC-126
UC-127
UC-128
UC-129
UC-130
UC-131
UC-132
UC-133

M12 UC-134
UC-135
UC-136
UC-137
UC-138
UC-139
UC-140
UC-141
UC-142
UC-143
UC-144
UC-145
UC-146
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Anexo 2 – Relação de horas acumuladas de teste e defeitos acumulados detectados
Horas Defeitos
2 0
6 4
8 5
48 6
90 12
190 13
192 16
222 16
224 16
226 21
234 21
236 21
238 21
240 21
258 22
260 26
262 26
264 27
390 27
404 36
414 37
416 38
424 39
448 39
450 49
452 52
524 54
526 55
528 55
532 55
534 55
536 55
542 55
816 55



69

Anexo 3 – Relação de horas acumuladas de teste e cobertura de código
Horas Cobertura
2 0
6 0.0294117647
8 0.0588235294
48 0.0882352941
90 0.1176470588
190 0.1470588235
192 0.1764705882
222 0.2058823529
224 0.2352941176
226 0.2647058824
234 0.2941176471
236 0.3235294118
238 0.3529411765
240 0.3823529412
258 0.4117647059
260 0.4411764706
262 0.4705882353
264 0.5
390 0.5294117647
404 0.5588235294
414 0.5882352941
416 0.6176470588
424 0.6470588235
448 0.6764705882
450 0.7058823529
452 0.7352941176
524 0.7647058824
526 0.7941176471
528 0.8235294118
532 0.8529411765
534 0.8823529412
536 0.9117647059
542 0.9411764706
816 0.9705882353
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Anexo 4 – Relação de horas acumuladas de teste e previsão de falhas acumuladas
detectadas pelo modelo Cai-Lyu
Horas Falhas
2 0
6 1
8 1
48 6
90 9
190 17
192 17
222 19
224 19
226 20
234 21
236 21
238 21
240 22
258 23
260 23
262 24
264 24
390 32
404 33
414 34
416 35
424 35
448 37
450 37
452 38
524 42
526 43
528 43
532 44
534 44
536 44
542 45
816 61



71

Anexo 5 – Relação de horas acumuladas de teste e previsão de falhas acumuladas
detectadas pelo modelo Cai-Gokhale
Horas Falhas
2 1
6 3
8 4
48 12
90 17
190 28
192 29
222 32
224 32
226 32
234 33
236 33
238 33
240 33
258 35
260 35
262 35
264 35
390 46
404 47
414 48
416 48
424 49
448 51
450 51
452 51
524 57
526 57
528 57
532 57
534 57
536 57
542 58
816 77


