PAULO ANDRES VILLEGAS VIERA

AVALIACAO DE IMPACTO DE DEFEITOS DE SOFTWARE SOBRE O PROCESSO
DE PREVISAO DE CONFIABILIDADE

Sao Paulo
2016



PAULO ANDRES VILLEGAS VIERA

AVALIACAO DE IMPACTO DE DEFEITOS DE SOFTWARE SOBRE O PROCESSO
DE PREVISAO DE CONFIABILIDADE

Monografia apresentada ao PECE — Pro-
grama de Educacao Continuada em Enge-
nharia da Escola Politécnica da Universi-
dade de S&o Paulo como parte dos requi-
sitos para conclusédo do curso de MBA em
Tecnologia de Software.

Sao Paulo
2016



PAULO ANDRES VILLEGAS VIERA

AVALIACAO DE IMPACTO DE DEFEITOS DE SOFTWARE SOBRE O PROCESSO
DE PREVISAO DE CONFIABILIDADE

Monografia apresentada ao PECE — Pro-
grama de Educacdo Continuada em Enge-
nharia da Escola Politécnica da Universi-
dade de Sdo Paulo como parte dos requi-
sitos para a conclusdao do curso de MBA
em Tecnologia de Software.

Area de Concentracéo: Tecnologia de
Software

Orientador: Prof. Dr. Kechi Hirama

Sao Paulo
2016



Catalogacao-na-publicacéo

VIERA, PAULO

AVALIACAO DE IMPACTO DE DEFEITOS DE SOFTWARE SOBRE O
PROCESSO DE PREVISAO DE CONFIABILIDADE / P. VIERA -- S&o Paulo,
2016.

71p.

Monografia (MBA em Tecnologia de Software) - Escola Politécnica da
Universidade de S&o Paulo. PECE — Programa de Educacéo Continuada em
Engenharia.

1.QUALIDADE DE SOFTWARE 2.CONFIABILIDADE DE SOFTWARE
3.MODELOS MATEMATICOS 4.ESTUDO DE CASO l.Universidade de S&o
Paulo. Escola Politécnica. PECE — Programa de Educag&o Continuada em
Engenharia Il.t.




DEDICATORIA

Dedico este trabalho a Deus, a mi-
nha mé&e e aos colegas de curso que,
apesar de ndo conseguirem comple-
tar a jornada, contribuiram para a

elaborac&o deste trabalho.

E a4 Raquel, SPS2R2!



AGRADECIMENTOS

A minha méae pelo amor e apoio durante a jornada que chega a concluséo com este
trabalho.

Ao meu orientador Kechi Hirama pela orientacdo e apoio na elaboracdo deste
trabalho.

Aos colegas de curso, que apesar de alguns ndo chegarem até o fim do curso,

contribuiram para a elaboracao deste trabalho.



RESUMO

O objetivo é investigar a relevancia em se utilizar a taxa da correcdo de defeitos
junto com a de cobertura de codigo como métrica dentro de um modelo de previsao
de crescimento de confiabilidade de software. No levantamento bibliogréfico,
constatou-se nas fontes estudadas a auséncia da utilizacdo da taxa de correcéo de
defeitos como uma métrica junto com a taxa de cobertura do cddigo, embora tais
métricas tenham sido propostas em 2004 e 2007, respectivamente. Considerando-se
esse cenario, foram aplicadas as duas métricas em um estudo de caso de software
elaborado por uma instituicdo publica brasileira, a fim de avaliar o desempenho da
previsdo de confiabilidade das métricas citadas num cenario real. Portanto, este
trabalho apresenta a andlise dos resultados e perspectivas para pesquisas nesta
area de trabalho.

Palavras-chave: Software. Qualidade. Confiabilidade. Modelo de crescimento de
confiabilidade de software.



ABSTRACT

The aim of this study is to investigate the relevance of using the fault removal rate
combined with code coverage rate as metrics in a software reliability growth model.
While researching the specialized literature, it was noticed the absence of the use of
fault removal rate as a metric along with the code coverage rate, even though these
metrics have been proposed in 2004 and 2007, respectively. This study applied the
two metrics using a case study of a software developed by a Brazilian public
company in order to evaluate the performance of reliability estimation in a real-world
scenario. This paper presents the results of the analysis and suggests directions for
future research.

Keywords: Software. Quality. Reliability. Software reliability growth model.



LISTA DE FIGURAS

Figura 1 — Curva de falhas acumuladas durante a fase de testes ............cccccvvvveeee. 46
Figura 2 — Curva do modelo Cai-Lyu em relacdo a curva de falhas acumuladas

.. 48

Figura 3 — Curva do modelo Cai-Gokhale em relagdo a curva de falhas acumuladas

.. 49

Figura 4 — Regibes de interesse para analise da curva de falhas acumuladas

..ol



SUMARIO

O [V T 10 T o3 - Y o TP i |
I /0 (Y 7= Vo 1= LS
1.2 OB BEIVO et e e e 12
1.3 JUSHIFICALIVA ... et it e e e e e e e e e e e e e e e e e e e 12
1.4 Estrutura do Trabalho ... 14
2. QUALIDADE DE SOFTWARE ......ciiiiiiiiii i ir s ss s sa s s s snnnannnns 17
2.1 Modelo de Qualidade da norma ISO/IEC 25010 .......cccviviiieiiiiiniiieieeniennen, 19
22000 Nt 2o =T 0= o T T 19
2.1.2 Eficiéncia de desempenio ..........cooiii it 19
2.1.3 Compatibilidade ..........cccoiriii e e 20
2.1.4Usabilidade ........cooiieiie e 20
2.1.5 Confiabilidade ... .......coueneiine e 21
2.0.6 PrOtEGA0D ...v ittt it et e e e e e e 21
2.1.7 Manutenibilidade ............cooieiiii e en 22
2.1.8 Portabilidade ...........cooiiiiii e 23
2.2 MEtrica € Medida .......oeeenie it e 23

2.3 Erro, defeito @ falna .......cov e i 24

2.4 Considerac8es do CapitulO .......cccoeiiiiieiiiiiie e 24
3. MODELOS DE CRESCIMENTO DE CONFIABILIDADE DE SOFTWARE ....... 26
3.1 Confiabilidade de Software ..o e e 26
3.2 Métodos para a Avaliacdo da Confiabilidade de Software ........................... 27
3.2.1 Modelo de Crescimento de Confiabilidade de Software ............................ 28

3.2.2 Modelos de Confiabilidade do Tipo Caixa-Preta ...............ccooiiiiiiiiiinenn, 30



3.2.3 Modelos de Confiabilidade do Tipo Caixa Branca ................ccccoeeievvennnnn. 31

3.2.4 M0OdEIOS MAEMALICOS ... . it iit e et et et 31
3.2.4.1 Modelo de Processo Poisson Discreto N8o-HOmogéneo ........................ 32
3.3 Utilizac8o de Um Fator .........oiiiiiii e e e e e 33
3.3.1 Utilizac&o de dois Fatores ..........coooiiiiiiiii e e e 34
3.3.2 Agregacédo de mais de dois Fatores ..........ccccoviiiiiiiiiii 34
3.4 1INCerteza LIMIte .....ooie it et et e e e e e e 35
3.5 Depuracao IMperfeita .........ooo oot e 36

3.6 Taxa de Remocao de Defeitos .......ovvvvi i 37
3.7 Considerac8es do Capitulo ........oooiiiiii e e 38

4. MODELO CAI-LYU E METODO DE GOKHALE .......cc.covvvvveieeeennneerenennnennnns 40
4.1 Modelo Cai-Lyu .....oovii i e 40
4.2 Estudo de Caso do Modelo Cai-Lyu .......oovveii i e e 42
4.3 Limites do Modelo Cai-LyU .......coiiiri i e e e e 43
4.4 Método de GOKhale ..o e el 43
4.5 Consideracdes do CapitulO ........ceeeeieieiiiiiiie e 44
5. MODELO PROPOSTO ...ccuuiuiiimiieirariansinsinasasssssssnssassassassnnssnssassassssnsnnsas 46

6. APLICAGAO E ANALISE ....cccevuiiiiiueieeiirceeee e seeeee s eessnesneeesnnseneee s eees 49
7. CONSIDERAQ()ES FINAIS .. s s s s e r s e e 58
7.1 CONCIUSOES ...t it e e et et e e et et e e et e e re e e eeeneneen D8
7.2 Contribuigdes do Trabalho ..........c.oiiiiii e e e D9

7.3 TrabalNOS FULUIOS ...t e e e e e e e e e e e e e e 59

REFERENCIAS ...ooieeeeeeeeeeeeeestessasse s en sensnsnssssasesensensnsnssnsensesensnnsnsnssnsesseses 61

ANEXOS ..eoieiiiitiin i i s e e e e e a e 64



11

1. INTRODUCAO

Este capitulo apresenta as motivacdes, 0 objetivo, as justificativas e a estrutura do

trabalho.

1.1 Motivacdes
A utilizagdo de software é cada vez mais intensa nas mais diversas funcdes
empresariais e pessoais. Com isso, existe demanda para o desenvolvimento de

software de alta qualidade. No entanto, a qualidade destes € um fator importante.

Neste sentido, ISO/IEC 25010 (ISO, 2011) apresenta um modelo com essa finalidade,
de forma que um conjunto de caracteristicas prevé uma estrutura de trabalho que
permite especificar requisitos de qualidade e avaliar a qualidade de um produto. Para
tanto, o modelo é composto por oito caracteristicas: adequacédo funcional, eficiéncia de
desempenho, compatibilidade, usabilidade, confiabilidade, protecdo, manutenibilidade e

portabilidade.

Segundo a ISO/IEC 25010 (ISO, 2011), confiabilidade é o grau no qual um sistema,
software ou componente funciona sob determinadas condicbes por um determinado
periodo de tempo. Por isso, a confiabilidde é uma das caracteristicas mais importantes
referentes a qualidade de software (YAMADA , 2014, p. 1).

Assim, para mensurar e gerenciar a confiabilidade do software, modelos matematicos,
tipicamente NHPP (do inglés, Non-Homogeneous Poisson Process), podem ser usados
para fazer previsdes sobre a quantidade de defeitos presentes no software em um dado
momento e a possibilidade de encontrar novos defeitos durante a execugdo de um
software por um determinado periodo (JAFFAL; TIAN, 2014, p. 246). Tais modelos



12

matematicos sdo chamados de SRGM (do inglés, Software Reliability Growth Model).
Um SRGM é uma ferramenta critica para controlar a qualidade do software. No entanto,
os modelos enfrentam dificuldades para representar exatamente, por meio de modelos
matematicos, o crescimento da confiabilidade de software no mundo real (OKAMURA;
DOHI, 2008, p. 19). Além disso, henhum SRGM proposto até o0 momento conseguiu
atuar em todos 0s cendrios possiveis de desenvolvimento de software (ALMERING et
al., 2007, p. 87; IMMONEN;NIEMELA, 2007, p. 49), sendo necessario um cuidado extra
para se determinar o modelo mais adequado a ser aplicado, ja que um modelo
inadequado poderia fornecer dados que resultassem em decisbes equivocadas dentro
de um projeto de desenvolvimento de software (ULLAH; MORISO;VETRO, 2012, p.
188).

1.2 Objetivo

O objetivo do trabalho € avaliar a influéncia que o impacto dos defeitos encontrados
exerce sobre o software no processo de previsdo de confiabilidade do software.
Também, o SRGM proposto por Cai e Lyu (CAI; LYU, 2007, p. 20), juntamente com o
meétodo proposto por Gokhale, Lyu e Trivedi (2004, p. 218) para calcular a taxa de
remocao de defeitos foram combinados. O modelo resultante foi chamado de modelo
Cai-Gokhale e este foi aplicado em um estudo de caso de software de workflow
desenvolvido por uma instituicdo publica brasileira. A influéncia da taxa de remocé&o de
defeitos sobre a previséao de confiabilidade foi discutida.

1.3 Justificativa

Nos ultimos anos, diversos SRGM foram propostos utilizando-se diversas abordagens e

métricas. Os primeiros modelos utilizaram uma Gnica métrica. Adicionando-se outras



13

métricas, o desempenho da previsdo de confiabilidade apresentou melhoras. Huang,
Kuo e Lyu(2007, p. 198) apresentaram dois SRGSM, usando o esforgo de teste como
uma métrica sob o cenario de depuracao perfeita e imperfeita, isto €, onde um ou mais
defeitos podem ser inseridos no processo de remocao de um defeito. J& Wang, Moriso
e Vetro (2007, p. 411) incorporaram a estrutura do software como um fator de
influéncia, mensurando a confiabilidade de cada componente do software na previséo
de confiabilidade do software como um todo. Por fim, Singh et al. (2007, p. 360)
consideraram a dependéncia entre defeitos, isto €, ndo encarando cada um como
independente de outros, mas sim, eventualmente, relacionando defeitos que provocam

outros defeitos, resultando em um efeito em cascata.

No entanto, o aumento de métricas utilizadas aumenta a incerteza ao se obter as
préprias medidas. Isto afeta a previsdo de confiabilidade (LI; XIE; HUING, 2010, p.
3560), mesmo que existam maneiras de determinar o grau de incerteza dentro de uma
previsdo de confiabilidade (CHANDRAN; DIMOV; PUNNEKKAT, 2010, p. 227). Assim,
mesmo a maneira como o modelo lida com as falhas, em si, afeta a previsdo, quer seja
considerando-se uma quantidade limitada ou ilimitada de possiveis defeitos no software
(YADAV; KHAN, 2009, p. 116).

Okamura, Etani e Dohi (2010, p. 32) abordaram a questao da incerteza no momento de
obtencdo das medidas, utilizando técnicas estatisticas para gerar um SRGM mais
simples e, consequentemente, com um nivel menor de incerteza na previsdo de
confiabilidade. Quadri, Ahmad e Faroog (2011, p. 7), por sua vez, apresentaram um
modelo onde o esforco de teste seguiu uma distribuicdo exponencial generalizada,
assumindo que a taxa de surgimento de defeitos e o esfor¢o de teste sao proporcionais
a quantidade restante de defeitos no software. Ja Kapur, Pham e Anand (2011, p. 333)
observaram que, a remocdo de apenas um defeito pode provocar o surgimento de
outros defeitos e a quantidade de defeitos removidos n&do necessariamente

corresponde a mesma quantidade de defeitos observados. Por fim, Peng et al. (2014, p.



14

38) consideraram o esforco de deteccdo de defeitos e o esforgco de correcdo dos

mesmos como dois fatores distintos que podem ser incorporados em outros SRGM.

No levantamento bibliografico deste trabalho, constatou-se que dois fatores que
repetidamente aparecem nos SRGM séo: o tempo gasto com testes, como no modelo
apresentado por Singh et al. (2007, p. 361), e o processo de depuracgéo, ou correcao
de defeito (ULLAH; MORISIO; VETRO, 2012, p. 187). Segundo Gokhale, Lyu e Trivedi
(2004, p. 213), um fator que deve ser levado em consideracdo € o tempo necessario
para corrigir um defeito. Também, Gokhale, Lyu e Trivedi (2004, p. 213) forneceram um
método para correlacionar a taxa de deteccdo de defeitos com a taxa de remocéo de
defeitos. Durante os estudos para este trabalho, ndo foram encontrados modelos que
utilizassem tanto a taxa de cobertura de cédigo quanto a taxa de correcao de defeitos

como fatores para previsédo de confiabilidade.

Este trabalho parte do pressuposto que o tempo de remocao de um defeito impacta na
taxa de deteccdo de novos defeitos, seja porque a equipe de testes precisa aguardar
gue os defeitos sejam removidos (sob demanda ou por lote), seja porque defeitos néo-

detectados foram removidos juntos com os defeitos j& detectados.

Portanto, o presente trabalho verifica a influéncia que a taxa de remocéo de defeitos
exerceu na previsao de confiabilidade, junto com a taxa de cobertura de codigo. Isso se
d& por meio da aplicacdo de um SRGM utilizando esses dois fatores, fazendo uma
analise do impacto da taxa de remocdo de defeitos sobre a previsibilidade de

confiabilidade de software.



15

1.4 Estrutura do Trabalho

Este trabalho esta organizado na seguinte estrutura:

Capitulo 1 — Introdugdo — Este capitulo descreve as motivacdes, o objetivo, as

justificativas e estrutura do trabalho.

Capitulo 2 — Qualidade de Software — Este capitulo trata de definicdes de qualidade de
software, sua influéncia no desenvolvimento de software, especialmente na fase de
testes. Também, define os termos usados como erro, defeito e falha, métrica e medida e

confiabilidade de software.

Capitulo 3 — Modelos de Crescimento de Confiabilidade de Software — Este capitulo
trata de modelos de crescimento de confiabilidade de software, modelos matematicos
envolvidos e a historia da evolugéo destes, a aplicacdo de um ou dois fatores e o limite
de fatores impostos pelas incertezas inerentes ao processo de previsdo de

confiabilidade de software.

Capitulo 4 — Modelo de Cai-Lyu e Método de Gokhale — Este capitulo apresenta o
modelo proposto por Cai e Lyu (2007), suas caracteristicas e flexibilidade que o tornam
uma proposta interessante para andlise proposta pelo presente trabalho. Também é
apresentado o método de Gokhale, Lyu e Trivedi (2004), para estimar a taxa de
remocao de defeitos e a influéncia que esta exerce sobre a previsdo de confiabilidade

de software.



16

Capitulo 5 — Modelo Proposto — Este capitulo apresenta uma proposta para avaliar a
influéncia do impacto de defeitos sobre a previsdo de confiabilidade de software. De
forma que o SRGM proposto por Cai e Lyu (2007) € combinado com o método de
Gokhale, Lyu e Trivedi (2004), sendo o modelo resultante chamado de modelo Cai-
Gokhale.

Capitulo 6 — Aplicacdo e Andlise — Este capitulo apresenta a aplicagcdo do modelo Cai-
Gokhale em dados coletados durante o desenvolvimento de um software por uma
instituicdo publica brasileira, comparando-se os resultados do modelo Cai-Gokhale com

0 modelo Cai-Lyu.

Capitulo 7 — Consideracdes Finais — Este capitulo apresenta conclusdes do trabalho,

contribuicdes e aponta possiveis trabalhos futuros sobre o tema.

REFERENCIAS — Apresenta a lista de fontes usadas para a elaboracdo deste trabalho.

ANEXOS — Apresenta as tabelas com os dados utilizados no estudo de caso utilizado

no Capitulo 6.



17

2. QUALIDADE DE SOFTWARE

A definicdo de qualidade é dificil, assim com é ainda mais dificil garantir a qualidade de
algum produto (HIRAMA, 2011). O software é um produto resultante da necessidade do
cliente e, como produto, precisa ter qualidade. Considerando-se que a utilizacdo de
software é cada vez mais intensa nas diversas funcdes empresariais e pessoais, ha

demanda para software de qualidade.

A qualidade de software é uma combinacdo complexa de caracteristicas que variam de
acordo com as aplicacdes e clientes que o solicitam. Também, as necessidades de
software solicitadas pelos clientes estédo tornando-se cada vez mais robustas, e assim,
como resposta para atender a essa gama de necessidades surgem diversas
tecnologias (PRESSMAN, 1995).

Além disso, tem havido uma conscientizacdo maior da importancia do gerenciamento
de qualidade de software e da adocdo de técnicas de gerenciamento de qualidade
envolvidas no desenvolvimento de software. Alcancar um alto grau de qualidade nos
produtos ou servicos € o principal objetivo da maioria das organizacdes. Assim,
desenvolver e entregar produtos com baixa qualidade e reparar os problemas e as
deficiéncias existentes depois que os produtos foram entregues ao usuario, ndo € mais
aceitavel atualmente (SOMMERVILLE, 2007).

Para se chegar em um produto de software ou para a manutencdo de um ja existente
sdo executadas diversas atividades, gerando-se diferentes subprodutos que sé&o
necessarios para a concepcao do software. Essas atividades podem ser agrupadas em
processos, os quais definem, em geral, o conjunto de atividades, ferramentas e
métodos utilizados no desenvolvimento de um determinado produto (HUMPHREY,
1989, p. 284).



18

Pressman (1995) reforcou a tese que diversos esforcos foram feitos para desenvolver
medicdes precisas da qualidade de software, sendo que esses, as vezes, frustraram-se
pela natureza subjetiva da atividade. Neste contexto, visando avaliar a qualidade de
produto de software, foram criadas e atualizadas periodicamente normas internacionais

e nacionais para tal finalidade.

Segundo a norma de qualidade ISO/IEC 25010 (ISO, 2011), a qualidade de software é
definida como “o grau em que o sistema satisfaz as necessidades implicitas e explicitas
de seus varios stakeholders”. Isto significa que as necessidades explicitas sao
expressas na definicdo de requisitos propostos pelo cliente, ao passo que as
necessidades implicitas sdo aquelas que podem né&o estar expressas nos documentos,

mas que sao necessarias aos clientes.

O modelo apresentado na norma ISO/IEC 25010 (ISO, 2011) consiste em um modelo
de qualidade composto por um conjunto de caracteristicas que resultam em uma
estrutura de trabalho que permite especificar requerimentos de qualidade e avaliar a

qualidade de um produto.

A qualidade pode ser medida ao longo do processo de engenharia de software e depois
gue este foi entregue ao cliente e aos usuarios. Na maioria dos empreendimentos
técnicos, as medigbes de qualidade ajudam os profissionais envolvidos a entender o
processo técnico usado para desenvolver um produto, como também o préprio produto.
O processo € medido com a intencdo de aprimora-lo. Assim, o produto também é
medido com a finalidade de aumentar a sua qualidade (PRESSMAN, 1995).



19

2.1 Modelo de Qualidade da Norma ISO/IEC 25010

O modelo de qualidade da norma ISO/IEC 25010 é composto por oito caracteristicas: 1)
adequacdao funcional; 2) eficiéncia de desempenho; 3) compatibilidade; 4) usabilidade;
5) confiabilidade; 6) protecéo; 7) manutenibilidade; e 8) portabilidade (ISO, 2011).

2.1.1 Adequacao funcional

A adequacéo funcional é o grau em que um produto ou sistema fornece funcdes que
correspondam as necessidades explicitas e implicitas quando usado sob condicdes
especificadas. Ela € composto por trés subcaracteristicas: 1) completude funcional,
que € o grau em que o conjunto de funcbes abrange todas as tarefas e objetivos
especificos dos usuérios; 2) correcao funcional, que é o grau ao qual um produto ou
sistema fornece o0s resultados corretos com a precisdo necessaria; e 3)
adequabilidade funcional, que é o grau em que as func¢@es facilitam a realizacdo das

tarefas e objetivos especificados.

2.1.2 Eficiéncia de desempenho

A eficiéncia de desempenho é a eficiéncia do produto ou sistema em relacdo a
guantidade de recursos utilizados sob condicfes estabelecidas.

E composta por trés subcaracteristicas: 1) comportamento temporal, que é grau em
gue os tempos de resposta e de processamento e taxas de transferéncia de um produto
ou sistema, no desempenho das suas funcfes, atendem aos requisitos; 2) utilizacao
de recursos, que € 0 grau em que as quantidades e tipos de recursos usados em um

produto ou sistema, no desempenho das suas fungdes, para atender aos requisitos; e



20

3) capacidade, que € o grau em que 0s limites maximos de um parametro, de produto

ou sistema, atendem 0s requisitos.

2.1.3 Compatibilidade

A compatibilidade € o grau em que um produto, sistema ou componente pode trocar
informacBes com outros produtos, sistemas ou componentes, e/ou realizar suas
fungbes necessarias, enquanto compartiha o mesmo ambiente de hardware ou
software. Ela é composto por dois subcaracteristicas: 1) co-existéncia, que é o grau
em que um produto pode desempenhar as suas funcdes de forma eficiente enquanto
compartilha um ambiente e/ou recursos comums com outros produtos, sem impacto
negativo em qualquer outro produto; e 2) interoperabilidade, que é o grau em que dois
ou mais sistemas, produtos ou componentes podem trocar informacdes e utilizar as

informagdes trocadas.

2.1.4 Usabilidade

A usabilidade é o grau em que um produto ou sistema pode ser usado por usuarios
especificos para alcangar objetivos especificos com efetividade, eficiéncia e satisfacdo

em um contexto de uso especifico.

Ela € composta por seis subcaracteristicas: 1) reconhecimento de adequacao, que é
0 grau em que 0s usuarios podem reconhecer se um produto ou sistema é adequado
para as suas necessidades; 2) capacidade de aprendizado, que € o grau em que um
produto ou sistema pode ser usado por usuarios especificos para alcancar objetivos
especificos de aprendizagem para usar o produto ou sistema com eficacia, a eficiéncia,

a inexisténcia de risco e satisfagdo dentro de um contexto de uso especifico; 3)



21

operabilidade, que é o grau em que um produto ou sistema tem atributos que o tornam
facil de operar e controlar; 4) protecao de erros do usuario, que é o grau em que um
sistema protege os usuarios de cometerem erros; 5) estética da interface do usuario,
gue é o grau em que uma interface do produto ou sistema permite a interacao
agradavel e satisfatéria para o usuario; e 6) acessibilidade, que é o grau cujo produto
ou sistema pode ser usado por pessoas com a gama mais ampla de caracteristicas e

capacidades para atingir um objetivo especifico em um contexto de uso.

2.1.5 Confiabilidade

A confiabilidade é o grau em que um sistema, produto ou componente executa funcées
especificadas sob condi¢bes especificas por um periodo de tempo estabelecido. Ela é
composta por quatro subcaracteristicas: 1) maturidade, que € o grau em que um
sistema, produto ou componente satisfaz as necessidades de confiabilidade em
condi¢cBes normais de operacédo; 2) disponibilidade, que é o grau em que um sistema,
produto ou componente esta operacional e acessivel quando for necessaria sua
utilizacdo; 3) tolerancia a defeito, que € o grau em que um sistema, produto ou
componente opera como pretendido, apesar da presenca de defeitos de hardware ou
software; e 4) recuperabilidade, que é o grau em que, no caso de uma interrupcéo ou
uma falha, o produto ou sistema pode recuperar os dados diretamente afetados e re-

estabelecer o estado desejado do sistema.

2.1.6 Protecao

A protecdo é o grau no qual um produto ou sistema protege informacdes e dados, de

modo que as pessoas, outros produtos ou sistemas possuam o apropriado grau de

acesso aos dados, conforme seus respectivos tipos e niveis de autorizagdo. Ela é



22

composto por cinco subcaracteristicas: 1) confidencialidade, que é o grau em que um
produto ou sistema garante que os dados estardo acessiveis somente por pessoas
autorizadas a ter acesso; 2) integridade, que € o grau em gque um sistema, produto ou
componente impede o0 acesso nao autorizado, ou alteracdo de, programas de
computador ou dados; 3) nao-repudio, que é o grau em que as agbes ou eventos
ocorridos dentro do produto ou sistema podem ter suas ocorréncias provadas, de modo
gue os eventos ou acdes nao podem ser repudiados mais tarde; 4) atribuicao, que € o
grau em que as acles de uma entidade pode ser atribuidas exclusivamente a ela; e 5)
autenticidade, que é o grau em que a identidade de um assunto ou recurso podem ser

provado como unico reivindicados.

2.1.7 Manutenibilidade

A manutenibilidade é grau de eficacia e eficiéncia com que um produto ou sistema pode

ser modificado pela designada equipe de manutencéo.

Ela € composta por cinco subcaracteristicas: 1) modularidade, que € o grau em que
um programa de computador ou sistema € composto por componentes discretos, de tal
forma que uma mudanca em um determinado componente tem impacto minimo sobre
os demais; 2) reusabilidade, que é grau em que um componente pode ser utilizado em
mais de um sistema, ou na construcdo de outros componentes; 3) analisabilidade, que
€ o grau de eficacia e a eficiéncia com a qual é possivel avaliar o impacto de uma
mudanca sobre uma ou mais partes de um produto ou de um sistema, quer seja para
diagnosticar deficiéncias ou causas de falhas de um produto, bem como para identificar
componentes a serem modificados; 4) modificabilidade, que é o grau cujo produto ou
sistema pode ser modificado de forma eficaz e eficiente sem a introdugéo de defeitos
ou degradacédo da qualidade do produto existente; e 5) testabilidade, que € o grau de

eficacia e eficiéncia com a qual é possivel estabelecer critérios de teste de um sistema,



23

produto ou componente de modo que testes podem ser realizados para determinar se

esses critérios foram ou ndo cumpridos.

2.1.8 Portabilidade

A portabilidade é o grau de eficacia e eficiéncia com que um sistema, produto ou
componente pode ser transferida de um hardware, software ou outro ambiente
operacional, assim como para outro uso. Ela é composta por trés subcaracteristicas: 1)
adaptabilidade, que é o grau cujo produto ou sistema pode eficaz e eficientemente ser
adaptado para outro hardware, software ou outros ambientes operacionais ou de uso;
2) facilidade de instalacao, que é o grau de eficacia e eficiéncia com que um produto
ou sistema pode ser instalado e/ou removido de um ambiente especifico com sucesso;
e 3) facilidade de substitui¢cdo, que é o grau ao qual um produto pode substituir outro

produto de software especificado para o0 mesmo fim no mesmo ambiente.

No presente trabalho utilizou-se a definicdo da ISO/IEC 25010 (ISO, 2011) para

confiabilidade como parametro de qualidade de software.

2.2 Métrica e Medida

Métrica é definida por Bohem, Brown e Lipow (1976) como a extensao ou grau em que
um sistema ou produto possui ou exibe uma certa caracteristica. Métricas surgem da
necessidade de avaliar um artefato objetivamente e séo utilizadas no desenvolvimento
de software para assegurar caracteristicas como a confiabilidade. Medida é a indicacdo

guantitativa de uma certa caracteristica de um sistema ou produto.



24

2.3 Erro, Defeito e Falha

Erro é a acdo humana que produz um resultado incorreto, por exemplo, quando o
desenvolvedor, ao interpretar equivocadamente os requisitos do software, comete erros
na codificacdo (HIRAMA, 2011).

Ja o defeito € uma implementacao incorreta dentro de um artefato, seja um defeito no
software ou dentro de um manual de instrucdes. Eles séo inseridos em artefatos por
meio de erros (HIRAMA, 2011).

Por fim, falha é a incapacidade de um sistema ou componente em executar as funcées
requeridas dentro de um nivel de desempenho definido. Assim, a falha pode ser

entendida como a manifestagdo de um defeito dentro de um artefato (HIRAMA, 2011).

Com bases nestas definicdes, é possivel afirmar que erros causam defeitos, mas
defeitos ndo necessariamente produzem falhas. No entanto, erros podem ocorrer em

gualquer fase de desenvolvimento de software.

2.4 Consideracdes do Capitulo

O desenvolvimento de software envolve a execucdo de diversas atividades gerando-se
diferentes subprodutos que sao necessarios para a concepcdo do software
(HUMPHREY, 1989, p. 284). O software desenvolvido visa satisfazer as necessidades
implicitas e explicitas dos stakeholders, e o grau em que o software satisfaz tais
necessidades é a definicdo da ISO/IEC 25010 (ISO, 2011) para qualidade.



25

Durante o desenvolvimento, erros introduzidos por agdo humana afetam diretamente a
qualidade do software, produzindo resultados incorretos. Nesse contexto, a
confiabilidade do software é o grau em que um sistema, produto ou componente
executa funcdes especificadas sob condicBes especificas por um periodo de tempo
estabelecido (ISO, 2011). Ou seja, por quanto tempo um software consegue executar

as funcdes esperadas pelos stakeholders sem a ocorréncia de uma falha.



26

3. MODELOS DE CRESCIMENTO DE CONFIABILIDADE DE SOFTWARE

Uma ferramenta importante para ajudar um gestor de projeto de software a aferir a sua
confiabilidade, isto €, por quanto tempo o software pode funcionar sem que falhas
ocorram, € o modelo de crescimento de confiabilidade de software, ou como é
conhecido: SRGM.

Assim, para utilizar tal modelo, € preciso coletar informacgdes sobre o projeto, sendo que
cada SRGM possui um ou mais tipos de informagdo como entrada, também chamados

de fatores.

3.1 Confiabilidade de Software

Segundo Sommerville (2011, p. 656), os interessados em um software possuem
diversas necessidades que vao além das suas funcionalidades. Portanto, o nivel no
gual o software atende a todas essas necessidades, além de atender as

funcionalidades necessarias, é o nivel de qualidade do sistema.

Nesse sentido, uma dessas necessidades € a confiabilidade do software. Segundo a
ISO/IEC 25010 (ISO, 2011), confiabilidade é o grau no qual um sistema, software ou
componente funciona sob determinadas condicbes por um determinado periodo de
tempo. Desta maneira, a confiabilidade pode ser descrita como a probabilidade de um
software apresentar o resultado esperado durante um certo tempo. Porém, isto é
diferente de disponibilidade, onde o software apresenta o0 resultado esperado no
momento que 0 usuario solicita o resultado. Logo, a confiabilidade implica em uso
continuo do software (SOMMERVILLE, 2011, p. 295).



27

Segundo Yamada (2014, p. 1), a confiabilidade de software é uma das caracteristicas
mais importantes referentes a qualidade. Assim, é importante ressaltar que a
confiabilidade esta ligada ao cenario de uso do software, sendo que o0 mesmo pode ter
uma confiabilidade diferente para um usuario iniciante, do que para um usuario
avancgado, pois este pode explorar mais recursos e encontrar defeitos que o usuario

iniciante ndo encontraria.

De acordo com Sommerville (2011, p. 300), ndo € possivel ter plena certeza da
completa auséncia de defeitos em um software. Sendo assim, a confiabilidade pode ser
estimada calculando-se a provavel quantidade de defeitos persistentes em um software.
Por isso, sdo efetuados testes levando-se em consideracdo os dados obtidos durante a

revisdo de especificacdes, design e codificacéo.

Para tanto, um modelo adequado de dados de teste ajuda a identificar a taxa de
defeitos detectados em um software (CHANDRAN; DIMOV; PUNNEKKAT, 2010, p.
229). Assim, € possivel estimar a quantidade de defeitos ainda presentes no software e,

portanto, estimar durante quanto tempo o software apresentara o resultado esperado.

Por fim, a confiabilidade também pode ser usada para tomar decisfes estratégicas
sobre o software como, por exemplo, indicar a quantidade de tempo e recursos que
devem ser aplicados para eliminar mais defeitos. Sendo que Okamura, Etani e Dohi
(2010, p. 31) defenderam a tese de que a confiabilidade pode ser utilizada para

determinar o momento do langamento de um software no mercado.

3.2 Métodos para a Avaliacdo da Confiabilidade de Software

Segundo Chandran, Dimov e Punnekkat (2010, p. 229), ha trés grupos de métodos para

avaliar a confiabilidade de um software: testes, simulacdo e feedback de usuérios.



28

De acordo com Sommerville (2011, p. 206), o processo de testes possui dois objetivos
distintos: demonstrar que o software atende as especificacdes e descobrir falhas para
as devidas correcdes. Para isso, a avaliacdo de confiabilidade de software utiliza os
dados coletados durante a busca de falhas. Portanto, o teste de software é a
abordagem mais comum, sendo um elemento critico na garantia de qualidade de

software , representando a revisao das suas especificacdes, design e codificacao.

O segundo método, isto €, a simulacéo, ao contrario do método de teste para avaliar a
confiabilidade, parte do pressuposto de que a confiabilidade de software ndo depende
somente de sua estrutura, mas também do tempo de execucdo, frequéncia de
reutilizacdo de componentes, tempo gasto, interacdes entre 0s componentes, etc
(CHANDRAN; DIMOV; PUNNEKKAT, 2010, p. 230). Assim, o projeto dos requisitos e

codigo da estrutura do software séo revistos e a sua execucao fornece o desempenho.

Por fim, outra abordagem para se obter dados que avaliem a confiabilidade de um
software € por meio do feedback dos usuéarios. De modo diferente, os dados sao
obtidos ap6s o lancamento do software no mercado e refletem a sua real utilizagéo
pelos usuérios. Por isso, diferente da abordagem de testes, os dados provém do
comportamento imprevisivel do usuario, ao invés de usar um modelo de dados de teste
ou testes planejados. Tipicamente, os dados sobre falhas do sistema sdo coletados por
relatorios enviados pelo usuéario e, posteriormente, cruzados com a frequéncia dos
relatérios, a fim de se estimar a quantidade restante de defeitos, avaliando-se a
confiabilidade do software.

3.2.1 Modelo de Crescimento de Confiabilidade de Software

Para avaliar a confiabilidade do software, a abordagem mais comum é a utilizacédo de

testes e coleta de dados sobre os resultados de falhas nos testes. Porém, quando os



29

dados de falha nédo estéo disponiveis ou quando as falhas ndo sdo observadas durante
os testes, pode-se adotar uma abordagem de estimacdo bayesiana para estimar a
probabilidade de uma falha surgir (CHANDRAN; DIMOV; PUNNEKKAT, 2010, p. 229).

Segundo Jaffal e Tian (2014, p. 247), para fazer a previsdo da quantidade de defeitos
restantes no software e o tempo de execugdo necessario para as correspondentes
falhas manifestarem-se, modelos matematicos podem ser usados. Tais modelos,
segundo Ullah, Morisio e Vetro (2012, p. 187), assumem que a confiabilidade do
software cresce apds um defeito ser detectado e consertado. Com essa previsao, é

possivel decidir se é valido prosseguir com os testes ou interrompé-los.

Esses modelos matematicos sdo chamados de SRGM (Software Reliability Growth
Model), sendo que Yamada (2014, p. 40) definiu 0 SRGM como um modelo de analise
matematica com a finalidade de medir e avaliar quantitativamente a confiabilidade do
software. Desta maneira, 0 SRGM pode ser aplicado durante o processo de projeto,
codificacédo, integracéo, testes e apos o lancamento do software. No entanto, aplicar um
SRGM durante o projeto e codificacdo ndo gera resultados aceitaveis, ja que o software
ainda é instavel e ndo possui todas as funcionalidades necessérias, dependendo do

estagio de desenvolvimento.

Embora seja possivel executar um SRGM apos o lancamento, isto pode ser tardio para
evitar impactos negativos com o0s usuarios. Por isso, Almering et al. (2007, p. 83)
argumentaram que o momento ideal para executar um SRGM é durante o processo de

testes.

Os modelos de confiabilidade, segundo Ullah, Morisio e Vetro (2012, p. 187), podem ser

classificados de acordo com o tipo de teste de software que é realizado:

— guando o teste considera apenas 0s requisitos, sem atentar-se a estrutura interna do

software, o teste € chamado de caixa-preta, sendo que este considera apenas o



30

resultado da interacdo do software com os dados de entrada. Por isso, os modelos de
confiabilidade que utilizam dados provenientes deste tipo de teste sdo chamados de

modelos de confiabilidade do tipo caixa-preta;

— quando o teste considera, além dos requisitos, a estrutura interna e 0s componentes
do software, o teste é chamado de caixa-branca e os modelos de confiabilidade que
consideram a estrutura interna do software para estimar a confiabilidade sdo chamados

de modelos de confiabilidade do tipo caixa-branca.

3.2.2 Modelos de Confiabilidade do Tipo Caixa-Preta

Os modelos de confiabilidade do tipo caixa-preta sédo classificados em diferentes tipos:
modelos de previsdo antecipada, SRGM, modelos baseados no dominio de entrada e
modelos hibridos de caixa-preta (ULLAH; MORISIO; VETRO, 2012, p. 187).

Geralmente, os modelos de caixa-preta sao usados quando os dados dos resultados de
teste ou informacdes sobre falhas, tipicamente provenientes de um feedback de
usuarios, estdo disponiveis. Sabe-se que os modelos do tipo caixa-preta usam as
informacdes de falha do software observadas e fazem previsdes sobre falhas futuras,

refletindo, assim, o crescimento da confiabilidade do software.

Segundo Yamada (2014), os SRGMs séo classificados em trés grandes grupos:
modelos finitos, modelos infinitos com base no numero total de falhas expressas com
tempo infinito e modelos bayesianos. A sua notoriedade da-se pelo fato de os SRGMs

estdo em uso desde inicio dos anos 1970.



31

3.2.3 Modelos de Confiabilidade do Tipo Caixa Branca

De acordo com a forma de apresentacdo da estrutura interna de sistemas de software,
Chandran, Dimov e Punnekkat (2010, p. 230) dividiram os modelos de confiabilidade do
tipo caixa-branca em trés subgrupos principais: modelos baseados em estados finitos,

modelos baseados em caminhos e modelos aditivos.

Também, utilizando-se a abordagem da avaliacdo de confiabilidade do tipo caixa-
branca, ha quatro passos basicos: identificacdo de modulos/componentes que
constituem o sistema de software, construgcdo de modelo de arquitetura, definicdo da
falha de comportamento dos componentes e combinacdo do modelo de arquitetura com

a definicdo da falha de comportamento dos componentes.

3.2.4 Modelos Matematicos

O SRGM € um modelo matematico que especifica a forma geral do processo de falha
de software em funcéo de fatores como a introducéo de defeitos, a remocéao de defeitos
e 0 ambiente operacional. Assim, um SRGM é composto por diferentes parametros. E,
nesse sentido, parametro € determinado como uma constante ou variavel arbitraria que
aparece em uma expressdo matematica, cada valor do que restringe ou determina a

forma especifica de uma expressao.

Sabe-se que a taxa de defeitos, isto €, defeitos por unidade de tempo, de um sistema
de software €, geralmente, decrescente ao longo do processo de desenvolvimento,
devido ao processo de deteccdo e remocédo de defeitos. Desta maneira, a modelagem
de confiabilidade é feita para estimar a forma da curva da taxa de defeitos por meio de

estimativas estatisticas dos parametros associados ao modelo selecionado.



32

Segundo Ullah, Morisio e Vetro (2012, p. 187), a modelagem da curva de taxa de
defeitos tem dois objetivos: estimar o tempo extra de execucdo necessaria de teste
para atender a um objetivo especifico de confiabilidade e para identificar a

confiabilidade esperada do software quando o produto é liberado.

3.2.4.1 Modelo de Processo Poisson Discreto Nao-Homogéneo

Um processo Poisson € um conceito matematico usado, comumente, em estatistica e
que representa uma série de eventos aleatérios distribuidos ao longo do tempo. Por
isso, o0 intervalo de tempo entre dois eventos proximos segue uma distribuicdo
exponencial. Como consequéncia, o processo Poisson ndo-homogéneo permite que a

taxa de aparicéo de eventos varie ao longo do tempo.

Segundo Kapur et al. (2011, p.332), os modelos NHPP (Non-Homogeneous Poison
Process) descrevem a observacdo de falhas de software por meio de uma curva
exponencial. De modo que os modelos utilizam dados observados durante o processo
de testes, por exemplo, o tempo entre falhas, para estimar o numero residual de
defeitos no software e o tempo de teste necessario para os detectar. Assim, estes
modelos podem lidar com dados de intervalo e ponto e assumem que a intensidade da
taxa de falhas diminuiu conforme os defeitos foram sendo detectados e removidos
(ALMERING et al., 2007, p. 83).

A modelagem da curva da taxa de defeitos assume uma forma cbéncava. Por isto,
Almering et al. (2007, p. 83) argumentaram que a forma cncava geral da funcdo esta
ligada ao fato de que os defeitos restantes no software sdo mais sutis e muitas vezes

mais dificeis de se detectar e corrigir e, portanto, demandam mais tempo de testes.



33

Os modelos NHPP permitem distinguir duas abordagens para a modelagem da
confiabilidade. Modelos finitos de defeitos partem do pressuposto de que o software
possui um numero finito de defeitos e, eventualmente, pode ficar livre de defeitos. Em
tais modelos, a curva de taxa de defeitos aproxima-se de um valor finito. Mas, nos
modelos infinitos, assume-se que o0 numero de defeitos observados € infinito
(ALMERING et al., 2007, p. 83).

3.3 Utilizacao de Um Fator

No contexto de utilizacdo de SRGM, as meétricas empregadas pelo modelo s&o
chamadas de fatores. E, dentre os diversos SRGM que foram propostos, 0s primeiros
modelos usavam uma Unica métrica como parametro para a avaliacdo de

confiabilidade.

A maioria dos SRGMs baseados em NHPP concentra-se apenas nos eventos de
deteccdo de defeitos e remocgédo durante a fase de testes. Quando se estimam o0s
parametros do modelo de SRGMs baseados em NHPP € necessario adquirir somente o
tempo de deteccdo de falha ou o nimero de falhas detectadas durante o periodo de

testes.

Embora tais modelos sejam faceis de se manusear, Okamura, Etani e Dohi (2010, p.
31) afirmaram que esses parametros nem sempre sdo precisos devido a falta de

informacéo estatistica.



34

3.3.1 Utilizacao de Dois Fatores

Modelos que utilizam dois fatores apresentam melhor desempenho ao fazer previsdes
de confiabilidade. Okamura, Etani e Dohi (2010, p. 31) argumentaram que isso se deve
ao fato que, dada as possiveis dificuldades em se obter os dados, o modelo que se
utiliza somente de um fator ndo consegue fazer uma previsao de boa qualidade. Huang,
Kuo e Lyu (2007, p. 198) confirmaram isso, demonstrando o desempenho superior de
modelos que se utilizaram de dois fatores para a modelagem de confiabilidade,
empregando-se a combinacdo do esfor¢o de teste como uma métrica e o processo de

depuracéo imperfeita, onde o processo de remocéao de defeito introduz novos defeitos.

Por fim, Wang, Hemminger e Tang (2007, p. 411) buscaram incorporar a estrutura do
software como um fator de influéncia, mensurando a confiabilidade de cada
componente na previsdo de confiabilidade do software como um todo. Singh et al.
(2007, p. 360) consideraram a dependéncia entre defeitos, isto €, ndo encarando cada
defeito como independente de outros defeitos, mas sim, relagbes entre defeitos, que

provocam um efeito em cascata.

3.3.2 Agregacao de Mais de Dois Fatores

O aumento de métricas utilizadas, no entanto, aumenta a incerteza na hora de se obter
as proprias medidas. Isto acaba afetando a previsdo de confiabilidade (LI; XIE; HUING,
2010, p. 3560), mesmo que existam maneiras de se determinar o grau de incerteza
dentro de uma previsao de confiabilidade (CHANDRAN; DIMOV; PUNNEKKAT, 2010, p.
227).



35

Okamura, Etani e Dohi (2010, p. 32) abordaram a questao da incerteza no momento de
obtencdo das medidas, utilizando técnicas estatisticas para gerar um SRGM mais
simples e, consequentemente, com um nivel menor de incerteza na previsao de
confiabilidade. Por sua vez, Quadri, Ahmad e Faroog (2011, p. 27) apresentaram um
modelo onde o esforco de teste segue uma distribuicdo exponencial generalizada,
assumindo-se que a taxa de surgimento de defeitos e o esforco de teste s&o
proporcionais a quantidade restante de defeitos no software. J& Kapur et al. (2011, p.
333) observaram que a remocao de um defeito, por si sO, pode provocar o surgimento
de outros defeitos, notando-se que a quantidade de defeitos removidos, néao
necessariamente, corresponde a mesma de defeitos observados. Por fim, Peng et al.
(2014, p. 38) consideraram o esforco de deteccao de defeitos e o esforco de correcéo

de defeitos como dois fatores distintos que podem ser incorporados em outros SRGM.

3.4 Incerteza Limite

Um SRGM é uma ferramenta critica para controlar a qualidade do software. No entanto,
segundo Okamura e Dohi (2008, p. 19), tais modelos enfrentam dificuldades em
representar exatamente, por meio de modelos matematicos, o crescimento da
confiabilidade de software no mundo real. Além disso, segundo levantamento feito por
Almering et al. (2007), nenhum SRGM proposto consegue cobrir todos os cenarios
possiveis de desenvolvimento de software. Por isso, tal caracteristica vai além da
relagdo intrinseca entre a confiabilidade e o cenéario de execucdo, de modo que
diferentes dominios de software apresentam dindmicas distintas durante a fase de

testes.

Sabe-se que a confiabilidade é fortemente dependente da maneira como o sistema sera
utilizado. Assim, uma vez que a confiabilidade e disponibilidade s&o caracteristicas de

execucao, o impacto de defeitos na confiabilidade pode variar dependendo da forma



36

como é utilizado o sistema, isto €, a frequéncia com que a parte do sistema que
apresenta defeito serd executada. Portanto, a andlise de diferentes formas e
frequéncias para executar o sistema é um desafio para a previsédo de confiabilidade do
software, especialmente quando o perfil de seu uso ndo é conhecido de antemao
(IMMONEN; NIEMELA, 2007, p. 50).

Dentre alguns fatores, os que influenciam a incerteza incluem as caracteristicas de
software como: a complexidade do programa, a cobertura de teste, ambiente de
desenvolvimento e muitos outros, que aparecem durante o ciclo de desenvolvimento
(CHANDRAN; DIMOV; PUNNEKKAT, 2010, p. 228).

Vale destacar que a maioria desses problemas aparecem, principalmente, devido a
incerteza envolvida em parametros de confiabilidade. Ja os fatores, que contribuem
para a estimativa de confiabilidade de software, devem ser identificados (CHANDRAN;
DIMOV; PUNNEKKAT, 2010. p. 227).

Portanto, € necessario um cuidado extra para se determinar o modelo mais adequado a
ser aplicado, pois escolhendo-se um modelo inadequado pode-se fornecer dados que
resultem em decisbes equivocadas dentro de um projeto de desenvolvimento de
software (ULLAH; MORISIO; VETRO, 2012, p. 189).

3.5 Depuracao Imperfeita

A maioria dos modelos de crescimento de confiabilidade software propostas séo
baseadas na suposicdo de depuracao perfeita, ou seja, que todos os defeitos
detectados durante as fases de teste e operagcdo sao corrigidos e removidos
perfeitamente.



37

Peng et al. (2014, p. 38) argumentaram que as ac¢des de depuragcdo no ambiente de
teste e ambiente de operacdo ndo sao sempre realizadas perfeitamente. Por exemplo,
erros de digitacao invalidam a atividade de correcédo de defeito ou a remocao do defeito
nao é realizada corretamente devido a analise incorreta dos resultados dos testes. Além
disso, o processo de depuragéo €, geralmente, longe de ser perfeito. Também, muitos

defeitos detectados pelos clientes sao introduzidos durante a depuracéo.

Além da depuracdo imperfeita em atividades de correcdo de defeitos, € preciso
considerar a possibilidade de introduzir novos defeitos no processo de depuragao. Por
isso, dois tipos de falhas de software existem nas fases de teste ou operacgéo: falhas de
software causados por defeitos originalmente latentes no sistema de software antes do
teste (que sdo chamados defeitos inerentes) e falhas de software causados por defeitos

introduzidos durante a operacéo de software devido a depuragéo imperfeita.

Geralmente, recursos de teste ndo sdo constantemente alocados durante a fase de
teste de software que, em grande parte, pode influenciar a taxa de deteccao de falhas e
0 tempo necessario para corrigi-las. Por exemplo, o depurador pode passar uma
semana sem fazer qualquer trabalho de teste e trabalhar intensamente nos dias
seguintes. Além disso, € natural que os depuradores cometam erros e introduzam
novos defeitos durante os testes. Pois, eles tendem a introduzir mais defeitos quanto
mais esfor¢o € despendido nos teste, visto que o cédigo sofreu mais mudancas (PENG
et al. 2014, p. 42).

3.6 Taxa de Remocao de Defeitos

Sob a hipétese ideal de remocéo instantanea e perfeita de defeitos, o nimero esperado

de defeitos removidos € 0 mesmo que o numero esperado de defeitos detectados.

Gokhale, Lyu e Trivendi (2004, p. 222) argumentaram que, se leva-se ao se levar em



38

consideracdo o tempo necessario para a remogdo, o numero esperado de defeitos
removidos, em qualquer momento, dado é inferior ao niumero esperado de defeitos

detectados.

Por isso, a deteccdo de um defeito gera um impacto no processo de software, ja que €
preciso dispor de um tempo extra para a correcdo do mesmo. Assim, quanto mais
complexo for o defeito localizado, maior € serd o esforco e maior a probabilidade de

introduc&o de novos defeitos.

Essa relacdo é denominada taxa de remocédo de defeitos. A real taxa de defeitos no
software, (levando em conta a remocao explicita de defeitos), € maior do que a taxa
aparente de defeitos, quando nao se é levado em consideracéo os efeitos do processo
de remocéo do defeito. Com base nisto, Gokhale, Lyu e Trivedi (2004) argumentam
gue, com base nisso a confiabilidade estimada, sem levar em consideragcédo a taxa de
remocao de defeitos, leva a uma estimativa que tende a ser otimista, ou seja, uma

confiabilidade prevista maior do que a observada na pratica.

3.7 Consideracdes do Capitulo

Um SRGM é um modelo matematico usado para prever quantos defeitos ainda existem
e permitir a tomada de decisdo de parar os testes e lancar o produto. Para tanto, é
preciso escolher o modelo mais adequado para o software em questdo, bem como as
métricas a serem utilizadas. Mesmo tendo em maos as métricas necessarias para
utilizar um determinado SRGM, é preciso também levar em consideracdo o tipo de

cenario para o qual o modelo foi pensado.



39

Ao se propor a utilizagdo de um SRGM, é preciso considerar a necessidade de se
encontrar um equilibrio entre o esforco para realizar as medi¢cdes para alimentar o

SRGM e a qualidade da previsdo que o modelo consegue gerar.

Por conta dessas caracteristicas, muitas vezes recorre-se a um especialista da area,
seja para escolher o modelo ideal ou para se obter uma “segunda opinido” sobre a
previséo de confiabilidade (ALMERING et al. 2007, p. 87).



40

4. MODELO CAI-LYU E METODO DE GOKHALE

Cai e Lyu (2007, p. 17) consideraram a cobertura de codigo durante a execugéo dos
testes como uma métrica relevante para melhorar o desempenho de previsdo de
confiabilidade. Também, Cai e Lyu (2007, p. 18) relacionaram a cobertura de cdodigo

com a passagem de tempo.

Por sua vez, Gokhale, Lyu e Trivedi (1994, p. 218) argumentaram que a taxa de
remocao de defeitos de software afeta taxa de defeitos detectados e, portanto, deve ser

considerada ao estimar a confiabilidade de um software.

4.1 Modelo Cai-Lyu

Visando-se melhorar a capacidade de previsdo de confiabilidade, Cai e Lyu (2007)
propuseram a utilizacdo de dois fatores para calcular a confiabilidade do software: o
indice de cobertura de cédigo aplicado sobre um modelo de curva e a quantidade de
defeitos detectados ao longo do tempo aplicado sobre um modelo de curva. Cai e Lyu
(2007) afirmaram que o modelo proposto permite usar quaisquer modelos padrées de
curva, dando grande flexibilidade para experimentar curvas diferentes. No presente

trabalho, 0 modelo proposto por Cai € chamado de modelo Cai-Lyu.

No modelo de confiabilidade de software de dois fatores, relaciona-se o tempo de
execucado de testes entre a deteccdo de falhas e a quantidade de casos de testes

executados em relagéo ao total de casos de teste.

Cai e Lyu (2007) afirmaram que a confiabilidade depende do conjunto de testes
executados, de modo que a ordem com que os testes sdo executados influencia a

geracédo da curva de predicao de confiabilidade.



41

Vale destacar que a confiabilidade € composta por duas estimativas: uma da cobertura
de teste e do tempo de execucédo. Por isso, 0 modelo Cai-Lyu foca nos modelos para
estimativa da cobertura de teste. J& a estimativa do tempo de execucao pode vir de
outros SRGM. Assim, Cai e Lyu (2007) usaram dois modelos simplificados para obter a

estimativa da cobertura de teste: modelos hiper-exponencial e modelo beta.
A relacao entre a cobertura de teste e deteccéo de falhas € modelada usando-se NHPP.
Desta maneira, Cai e Lyu (2007) propuseram utilizar a relacdo entre a cobertura de
testes e tempo como parametros de corre¢cdo para outros modelos. Esses dois
parametros foram modelados usando-se NHPP, onde Os autores usaram NHPP e
exponencial para demonstrar a utilizagcdo do modelo proposto.

oy (1-e7) Fy(t) + ox(1-eY?) Fy(c)

Onde, F4(t) e F(c) podem ser modelos tradicionais.

A cobertura de cédigo é mensurada conforme os testes séo realizados. A variavel c vai

de 0 a 1, 1 indicando cobertura total do cédigo.

O modelo Cai-Lyu parte do pressuposto que a remocdo de defeitos € perfeita

0]

instantanea, ou seja, o processo de remocdo de defeitos remove completamente

o

defeito e ndo introduz novos defeitos, bem como o processo € instantdneo e nado é

contabilizado dentro do tempo de testes.



42

4.2 Estudo de Caso do Modelo Cai-Lyu

Para demonstrar a eficacia do modelo, Cai e Lyu (2007) utilizaram os dados obtidos em
um projeto realizado na Universidade de Hong-Kong em 2002, chamado de projeto
CUHK-RSDIMU. Este consistiu em formar 34 equipes independentes de
desenvolvimento com os alunos de graduacdo, que foram responsaveis por analisar,
codificar, testar, avaliar e documentar um software de sistema critico da area de

aeronautica.

Durante os quatro meses de duracdo do projeto, os dados acerca dos testes e da
cobertura de codigo foram armazenados, sendo que cada equipe de desenvolvimento
tinha que usar um software de controle de versdo para registrar todas as alteracdes

feitas no codigo-fonte.

Utilizando-se o controlador de versdo, Cai e Lyu (2007) geraram variagcbes dos
softwares desenvolvidos, chamados de mutantes, emulando assim 0s possiveis
defeitos encontrados. Desta forma, os defeitos presentes em todos o0s projetos dos
estudantes foram analisados como um Unico projeto. Na sequéncia, um programa foi
desenvolvido para testar todos 0os mutantes contra os testes do enunciado original e os
dados foram coletados. Por fim, com a massa de dados, Cai e Lyu (2007) compararam
a estimativa de confiabilidade gerada pelo modelo Cai-Lyu com outros modelos,
atestando o melhor desempenho do modelo Cai-Lyu por contemplar a cobertura de
codigo.

Dentro da mesma comparacéo, Cai e Lyu (2007) utilizaram modelos diversos para F(t)
e F»(c). Eles também constataram uma variacdo consideravel no desempenho de
estimativa de confiabilidade.



43

4.3 Limites do Modelo Cai-Lyu

O modelo de Cai (CAI; LYU, 2007) foi testado contra uma base de dados elaborada em
um ambiente académico, como resultado de um programa empregando alunos de
graduacdo. Como tal, € importante ressaltar a necessidade de comparar 0 modelo
proposto com dados de projetos elaborados em ambientes corporativos, testando o
modelo contra outras dinamicas de desenvolvimento e testes.

Cai e Lyu (2007) também salientaram que a escolha dos modelos para Fi(t) e Fx(c)
afeta o desempenho da estimativa final. Outro fator limitante, mencionado pelos
proprios autores, foi a necessidade de coletar uma quantidade maior de dados durante
a fase de testes, no caso a cobertura de codigo. Porém, esta informagédo nem sempre

esta disponivel em outros projetos.

4.4 Método de Gokhale

Gokhale, Lyu e Trivedi (2004, p. 218) propuseram considerar o0 impacto que a corre¢cao
de defeitos detectados causa no processo de testes e na confiabilidade do software. O
argumento é que, enquanto um modelo de confiabilidade pode utilizar a taxa de
deteccdo de defeitos para aferir a quantidade de defeitos remanescentes no software,

essa metrica assume a correcao instantanea e perfeita de defeitos.

Assim, segundo esses pesquisadores (2004), a taxa de defeitos detectados acaba por
ser uma meétrica otimista, por ndo levar em consideracdo 0 tempo necessario para
corrigir os defeitos detectados. Eles também defenderam duas linhas para modelar a

relacdo entre a taxa de falhas detectadas e os defeitos corrigidos.



44

7

A primeira linha assume que a taxa de defeitos removidos é constante, isto é, nao

dependem da taxa de deteccgéo de defeitos:

a(l - e®)

A segunda linha trata de defeitos latentes, isto €, ao se remover um defeito, o
desenvolvedor acaba corrigindo também outras partes relacionadas com o defeito
detectado, mas que ainda ndo se traduziram em defeitos detectados. Por isso, Os

defeitos latentes sao, inerentemente, mais dificeis de se remover:

ae™®

Cabe salientar que a equacao para taxa de remocao de defeitos, considerando-se o0s
defeitos latentes, foi apresentada por Gokhale, Lyu e Trivedi (2004, p.218 ) como uma
hipotese.

Para efeitos de avaliacédo, o presente trabalho utilizou a equacgéo para taxa constante

de remocéo de defeitos.

4.5 Consideracdes do Capitulo

Cai e Lyu (2007) apresentaram um SRGM flexivel, baseado na cobertura de cédigo e o
tempo de execucao de testes. Utilizando um estudo de caso, Cai e Lyu demonstraram
gue o SRGM apresentado produzia uma estimativa de crescimento de confiabilidade
melhor do que outros modelos que ndo utilizam a cobertura de codigo. Em
contrapartida, o modelo de Cai e Lyu parte do pressuposto que defeitos sdo detectados

e corrigidos instantaneamente, sem a insercao de novos defeitos.



45

Visando enderecar este tipo de pressuposto, Gokhale, Lyu e Trivedi (2004, p. 218)
prop6em um método para levar em consideracdo o impacto que o processo de corre¢ao
de defeitos produz na taxa de deteccdo de defeitos. Gokhale, Lyu e Trivedi
argumentam que, ao considerar a taxa de correcdo de defeitos, € possivel produzir

estimativas de crescimento de confiabilidade mais realistas.



46

5. MODELO PROPOSTO

Conforme discutido o capitulo 3.7, a escolha de um SRGM para utilizagdo num
determinado projeto de software deve levar em consideracdo o tipo de cenario para o
gual o modelo foi pensado. Por conta disso, a escolha do SRGM mais adequado é mais
trabalhosa e pode demandar a opinido de um especialista para a escolha do modelo a
ser usado (ALMERING et al. 2007, p. 87).

Neste contexto, o0 modelo Cai-Lyu mostra-se bastante promissor por conta de sua
flexibilidade e da extensa comparacao com outros modelos (CAl; LYU, 2007, p. 24). De
acordo com os autores, a relacdo da cobertura de testes com o tempo de execucéo dos
testes é o diferencial do modelo e a razdo para o desempenho superior em comparacao

com outros modelos.

A flexibilidade do modelo Cai-Lyu pode mitigar o problema de escolher um modelo
adequado a um projeto de software. Porém, no levantamento bibliografico do presente
trabalho, ndo foram encontrados novos desdobramentos do modelo Cai-Lyu,
especificamente no pressuposto assumido pelos autores, que os defeitos sao corrigidos
instantaneamente e, portanto, o processo de remocdo de defeitos ndo afeta a
estimativa de confiabilidade do software (CAI; LYU, 2007, p. 18).

Além deste fato, observa-se que o modelo Cai-Lyu foi utilizado com uma massa de
dados de um projeto executado em ambiente universitario. Cabe, entéo, averiguar qual
seria 0 desempenho do modelo Cai-Lyu utilizando-se os dados de um projeto
executado fora do ambiente controlado por uma universidade. Mais do que isso, é
interessante verificar que o pressuposto sobre o processo de remocdo de defeitos

mantém-se verdadeiro durante a aplicacdo em um estudo de caso.



47

O estudo de caso apresentado por Cai e Lyu ndo apresenta a remocéo de defeitos, por
tratar-se da analise de projetos previamente finalizados, portanto tornando a taxa de

remocao de defeitos irrelevante para a analise apresentada pelos autores.

Por conta da flexibilidade do modelo Cay-Lyu e por conta do foco na cobertura de
cbdigo, é possivel utilizar um modelo matematico que leve em conta a taxa de remocéao

de defeitos para a estimativa do tempo de execugéo dos testes.

Durante o levantamento bibliografico do presente trabalho, ndo foram encontrados
artigos apoiando ou refutando, por meio de um estudo de caso, a utilizacdo da taxa de
remocao de defeitos como um fator relevante para a previsdo da confiabilidade de
software, conforme proposto por Gokhale, Lyu e Trivedi (2004). E plausivel assumir que
0 tempo necessario para corrigir os defeitos afeta o processo de deteccdo de novos
defeitos, além da contagem de deteccdo de defeitos ndo levar em consideracdo os
defeitos que ainda estdo na fila para serem corrigidos (GOKHALE; LYU; TRIVEDI,
2004, p. 228).

Este trabalho propbs-se a combinar o modelo de Cai-Lyu com o método de Gokhale
para constatar a influéncia que a taxa de remocéo de defeitos tem sobre um modelo de

previséo de confiabilidade.

Gokhale, Lyu e Trivedi (2004) apresentaram dois métodos para relacionar os defeitos
detectados e os defeitos corrigidos em um dado instante t. O primeiro método modela a
taxa de defeitos corrigidos usando uma curva NHPP. O segundo método busca modelar
defeitos latentes, ou seja, defeitos que ainda n&o foram detectados, porém sé&o

corrigidos durante a correcdo de um determinado defeito.



48

Como o método proposto por Gokhale, Lyu e Trivedi (2004) para taxa de remocao de
defeitos latentes € hipotética, o presente trabalho n&o a utiliza, a fim de facilitar a

analise dos resultados.

Sendo assim, o modelo de Cai-Lyu,

(1= Fy(t) + a(1-€7*) Fy(c)
foi utilizado na sua forma original, empregando-se o método de Gokhale para taxa
constante de remogao de defeitos como Fa(t). Para F»(c), foi utilizada uma distribuicdo

NHPP em relacdo a cobertura de codigo em fungéo do tempo.

O modelo proposto utiliza NHPP para a cobertura de cédigo, de modo a manter

uniformidade com o modelo NHPP utilizado no método de Gokhale.

O modelo resultante foi chamado de Cai-Gokhale.



49

6. APLICAGAO E ANALISE

Para avaliar o modelo proposto, foram usados os dados de um sistema desenvolvido
pela Secretaria de Tecnologia de Informagcdo - SETI, Subsecretaria de
Desenvolvimento e Manutencéo de Sistemas — UDEM, do Tribunal Regional Federal da

32 Regido.

O sistema desenvolvido tem como objetivo integrar dois sistemas legados,

implementando um sistema de workflow.

A relacdo dos modulos e correspondentes testes esta listada no Anexo 1. No entanto,

as partes sensiveis dos dados foram omitidas.

Para a fase de testes do sistema, foram usadas 812 horas, aplicando-se 146 testes.
Como resultado, foram detectados 55 defeitos. E, para efetuar os testes e analises dos
modelos propostos, foi utilizado o programa RGA versdo 10 da suite de software

Reliasoft.

Na Figura 1 é possivel observar que a curva formada possui um pico de falhas
acumuladas x vs tempo, apés 400 h de testes. Isto ocorreu porque neste periodo foram
iniciados os testes do médulo M12 e, consequentemente, a correcdo dos primeiros
defeitos desencadeou alteracdes profundas em outras partes do cédigo que ja tinham
sido testadas previamente, o que gerou retrabalho nos testes. Como foi explanado
anteriormente, este € um comportamento nao previsto no modelo Cai-Lyu, o que torna

este estudo de caso particularmente interessante para analise e discussao.



'2,0000

Figura 1 — Curva de falhas acumuladas durante a fase de testes

50

60,0000

43,0000

36,0008

24,0000

Cumulative Number of Failures

12,0000

180.0000 360.0000 540.0000 7200000

Time (Hr)

Fonte: Autor

S00. 0000

Utilizando-se a relagdo de modulos e funcionalidades implementadas, foi possivel

mapear a cobertura de codigo em cada teste. Nota-se que um determinado trecho de

cédigo pode ser executado por mais de um teste. Segundo o desenvolvedor

responsavel pelo projeto, foi do entendimento do setor de desenvolvimento que 0s

trechos comuns de cédigo somente seriam considerados cobertos depois que todas as

funcionalidades que fizessem referéncia ao dito trecho fossem executados.



51

Assim, para adequar os dados obtidos de modo a utilizar os modelos propostos, foram
calculadas as horas acumuladas de teste e as falhas acumuladas detectadas. Por isso,
foi usado o Método dos Quadrados Minimos (YAMADA, 2014, p. 31) para determinar 0s

parametros necessarios para a execucao dos modelos.

beta: 0.523160
alfa: 0.504302

Para os modelos de taxa de defeitos encontrados, Fi(t), e cobertura de cdodigo, F»(c),

necessarios para utilizar o modelo Cai-Lyu, foi usado o modelo NHPP.

Na Figura 2, é possivel verificar a comparagcdo entre a curva de falhas acumuladas

durante a fase de testes e a curva de estimativa gerada pelo modelo Cai-Lyu.



52

Figura 2 — Curva do modelo Cai-Lyu (vermelho) em relacéo a curva de falhas

acumuladas (azul)

'2.000¢
60,0000 -
-
-
-
I,___'
48,0000 r
! T
] ’
/ o
L]
i ]
| -
E s I
= 36.0000 P
b  »
S g e
5 A e
& o -
E ~
= d."
= /
[=1]
£ g
S 24,0000 -
g : [a
3
L
-
1 .
.
.__;-P' ‘.l
12,0000 - A
4
/ -
L
_.
oY
[ 180.0000 360.0000 540.0000 720.0000 900000
Time {Hr)

Fonte: Autor

Calculando-se a area formada pelas curvas de falhas acumuladas e a curva formada
pelo modelo Cai-Lyu, é possivel quantificar quao préximo a previsdo do modelo chegou
da realidade (YAMADA, 2014, p. 58). Neste caso, a area formada pela curva de falhas e

o0 modelo Cai-Lyu é de 7,02 horas por falha detectada, isto é, o0 modelo Cai-Lyu prevé



53
um esforco de horas de teste por falha detectada 7,02 horas menor do que o observado

na curva de falhas acumuladas.

Na Figura 3, & possivel observar a comparagdo entre a curva de falhas acumuladas

durante a fase de testes e a curva de estimativa gerada pelo modelo Cai-Gokhale.

Figura 3 — Curva do modelo Cai-Gokhale (verde) em relagdo a curva de falhas

acumuladas (azul)

2.0000 T

60,0000

48,0000 t -

36,0000 | 3

R

240000

Cumulative Number of Failures
,

12,0005 ""_

0 180.0000 360.0000 540.0000 T20.0000 S00. 0000

Time {Hr)

Fonte: Autor



54

A éarea formada pela curva de falhas e o modelo Cai-Gokhale é 9,26 horas por falha
detectada, isto €, 0 modelo Cai-Gokhale prevé um esforco de testes de 9,26 horas a
mais do que o observado na curva de falhas acumuladas.

Utilizando-se somente a area formada pelos modelos, seria possivel concluir que o
modelo Cai-Lyu possui um desempenho melhor do que o modelo Cai-Gokhale: a
diferenca entre o esforgo previsto pelo modelo Cai-Lyu em relagdo ao observado na
pratica € menor do que a diferenca entre o esfor¢co previsto pelo modelo Cai-Gokhale

em relacdo ao observado na pratica.

Além disso, é possivel observar o efeito do método de Gokhale em acéo, ao gerar uma
previsdo mais pessimista, prevendo um esfor¢o maior de horas de teste, onde o modelo

Cai-Lyu prevé um esforco menor do que o observado na pratica.

Como a diferenca entre os dois € a utilizacdo do método de Gokhale, a primeira vista,
tem-se a impressao que a utilizacdo da taxa de remocao de defeitos como fator em um
SRGM nédo melhora o desempenho da estimativa de confiabilidade. No entanto, é
possivel tirar mais conclusGes apo6s analisar o gréfico dividido em regifes. Para facilitar
a analise, o gréfico foi dividido em quatro regides, conforme esta apresentado na Figura
4.



55

Figura 4 — Regides de interesse para analise da curva de falhas acumuladas

Regiao Regiao Regidao Regiao
Um Dois Trés Quatro

-

180.0000 360.0000 540.0000 7200000

Fonte: Autor

O grafico apresentado na Figura 4 foi dividido em quatro regides para ressaltar a

diferenca de desempenho entre as previsdes dos modelo Cai-Lyu e Cai-Gokhale.

Em cada regido, foi considerada a area formada entre a curva de falhas acumuladas e

0s modelos aqui analisados.



56

A Regido 1, que comprime os dados das primeiras 180 h de teste, apresenta uma area
de 4,36 horas de diferenca por falha detectada entre a curva de falhas e o modelo Cai-
Lyu. Ja contra uma area de 5,62 horas de diferenca por falha detectada entre a curva

de falhas e o modelo Cai-Gokhale.

A Regido 2 corresponde aos dados coletados entre 180 h e 360 h de teste. Nesta
regido, a area entre a curva de falhas e o modelo Cai-Lyu é 3,54 horas de diferenca por
falha detectada, contra uma area de 11,67 horas de diferenca por falha detectada entre

a curva de falhas e o modelo Cai-Gokhale.

A Regido 3 é a de maior interesse para esta analise, pois representa um pico de falhas
acumuladas, decorrentes do inicio dos testes do médulo denominado M12 (vide Anexo
1), sendo que ela comprime os dados coletados entre as marcas de 360 h e 540 h de

testes.

Observa-se que nesta regido o modelo Cai-Gokhale possui um desempenho melhor,
justamente por conta da abordagem “pessimista” do método de Gokhale, de modo que
a area entre a curva de falhas e o modelo Cai-Lyu é 14,22 horas de diferenca por falha
detectada, contra uma area de 6,77 horas de diferenca por falha detectada do modelo
Cai-Gokhale em relacdo a curva de falhas.

A Regido 4 compreende os dados coletados entre as marcas de 540 h e 816 h de teste.
Nesta regiao, o modelo Cai-Lyu volta a ter um desempenho melhor, apresentando uma
area de 6,37 horas de diferenca por falha detectada em relacdo a curva de falhas,
contra uma area de 11,41 horas de diferenca por falha detectada do modelo Cai-

Gokhale em relacéo a curva de falhas.



57

Conclui-se que 0 modelo de Cai-Lyu possui melhor aproximagdo com a realidade no
comeco, porém este modelo ajusta a curva conforme a cobertura de testes e o tempo
de execucdo, nao levando em conta o repentino aumento da taxa de deteccado de falhas

no comeco dos testes de M12.

Comparando-se as curvas geradas pelo modelo Cai-Lyu e Cai-Gokhale, € possivel
observar que o primeiro de fato gerou uma estimativa mais otimista, possivelmente por
nao levar em consideracdo o processo de remocao de defeitos. Sendo que esse efeito

confirma a observacao de Gokhale, Lyu e Trivedi (2004, p. 228).

A abordagem mais “pessimista” do método de Gokhale pode ser observada na curva do
modelo Cai-Gokhale, onde somente o pico de deteccfes de falhas na Regido 3 supera

a previsao do modelo.



58

7. CONSIDERAGOES FINAIS

O objetivo do trabalho foi avaliar a influéncia que o impacto dos defeitos encontrados
exerce sobre o software no processo de previsdo de confiabilidade do software.
Também, o SRGM proposto por Cai e Lyu, juntamente com o método proposto por
Gokhale, Lyu e Trivedi para calcular a taxa de remogé&o de defeitos foram combinados.
O modelo resultante foi chamado de modelo Cai-Gokhale e este foi aplicado em um
estudo de caso de software de workflow desenvolvido por uma instituicdo publica
brasileira. A influéncia da taxa de remocdo de defeitos sobre a previsdo de

confiabilidade foi discutida.

Este trabalho verificou a relevancia do tempo de corre¢cdo de defeitos como métrica
junto da métrica de cobertura de cédigo para avaliar a confiabilidade de software. Para
tal, utilizou-se um estudo de caso recente no Brasil, fora do ambiente controlado por

trabalho académico.

7.1 Conclusoes

Ao comparar os resultados obtidos pelo modelo Cai-Lyu e o modelo proposto por este
trabalho, chamado Cai-Gokhale, averiguou-se que o modelo Cai-Lyu representa melhor
a curva de dados. Porém, a excecao ocorre na Regido 3, onde o modelo Cai-Lyu ndo
acompanha o repentino aumento de deteccédo de falhas.

Deste modo, concluiu-se que a utilizacdo da métrica de tempo de correcdo de defeitos
detectados no SRGM néo resultou em uma melhoria na previsdo de crescimento da
confiabilidade do software. Por outro lado, o fato da curva gerada pelo modelo Cai-
Gokhale acompanhar o repentino aumento na taxa de falhas, na Regido 3, indica um

potencial para futuros trabalhos.



59

7.2 Contribuic6es do Trabalho

Este trabalho constatou que o tempo de remoc¢ao de defeitos, de fato, exerce impacto
na taxa de deteccdo de defeitos. Para tal, criou-se um modelo hibrido, utilizando-se a
flexibilidade do modelo Cai-Lyu com a possibilidade de levar em consideracao o tempo

de remocéo de defeitos.

Durante o estudo de caso, foi possivel observar que a previsdo de crescimento de
confiabilidade do software mostrou-se pessimista, isto €, superestimando os possiveis
defeitos ainda ndo detectados. Esta caracteristica € exatamente descrita por Gokhale,
Lyu e Trivedi (2004, p. 228). Sendo assim, o modelo proposto Cai-Gokhale une a
flexibilidade do modelo Cai-Lyu, que permite utilizar outros modelos de acordo com a
necessidade do projeto em questdo, com a “prudéncia” do método de Gokhale, Lyu e

Trivedi.

Ja a flexibilidade do modelo Cai-Lyu €, particularmente, interessante porque mitiga a
limitacdo dos SRGM de ndo serem capazes de cobrir todos os cenarios de projeto de
software, sendo necesséaria a selecdo de um modelo adequado (ALMERING et al.,
2007, p. 87; IMMONEN; NIEMELA, 2007, p. 49). Em contrapartida, o método de
Gokhale, Lyu e Trivedi (2007) mitiga possiveis previsdes “otimistas”, que correm o risco

de subestimar a quantidade real de defeitos restantes no software.

7.3 Trabalhos Futuros

Para trabalhos futuros, existe a possibilidade de se empregar outros modelos ou curvas
a fim de averiguar se a diferenga entre falhas acumuladas e falhas corrigidas pode ser
expressa por outras curvas, além da NHPP, proposta por Gokhale. Como se sabe, o

modelo de Cai-Lyu abre possibilidade para varias exploragdes, por conta de sua



60

flexibilidade para escolha de modelos para Fi(t) e F(c). Enquanto o método de
Gokhale, para modelagem de correcdo de defeitos latentes, também abre espaco para
maiores exploracoes.

Outro aspecto a ser considerado, € a maneira como a cobertura de coédigo é
mensurada. No estudo de caso aqui empregado, foi feito um mapeamento prévio dos
testes, onde uma funcdo foi considerada coberta pelos testes depois que fossem
executados todos os testes que poderiam executar aquela funcéo.

Portanto, uma consequéncia da utilizagdo da cobertura de codigo como fator € que se
parte do pressuposto que a cobertura de codigo é sempre crescente. Isto poderia ser
guestionado neste estudo de caso, pois 0 pico de deteccdo de defeitos na Regido 3,
possivelmente, implicou em alteracdo de codigos que ja tinham sido testados
previamente, e precisaram ser testados novamente. Segundo a sistematica adotada por
Cai e Lyu (2007), a cobertura de testes ndo retrocede de acordo com as correcdes

feitas.

Desta maneira, este € um potencial tema para futuros trabalhos, ja que o retrocesso na
cobertura de coédigos foi aplicado neste estudo de caso. Assim, de modo a facilitar e
incentivar futuras exploracdes, os dados do estudo de caso utilizados na analise deste

trabalho encontram-se nos anexos para consulta.



61

REFERENCIAS

ALMERING, V.; GENUCHTEN, M.; CLOUDT, G.; SONNEMANS, P. J. M. Using
Software Reliability Growth Models in Practice, IEEE Computer Society , 2007.

BOEHM, B. W.; BROWN, J. R.; LIPOW, M. Quantitative evaluation of software
quality. 2Nd International Conference on Software Engineering, IEEE Computer
Society Press, Los Alamitos, 1976.

CAl, X.; LYU, M. R. Software Reliability Modeling with Test Coverage:
Experimentation and Measurement with A Fault-Tolerant Software Project,
Department of Computer Science and Engineering, The Chinese University of Hong
Kong, Hong Kong, 2007.

CHANDRAN, S. K.; DIMOV, A.; PUNNEKKAT, S. Modeling uncertainties in the
estimation of software reliability — a pragmatic approach. Fourth IEEE International
Conference on Secure Software Integration and Reliability Improvement, 2010.

GOKHALE , S. S,; LYU, M. R,; TRIVEDI, K. S. Analysis of Software Fault Removal
Policies Using a Non-Homogeneous Continuous Time Markov Chain. Software
Quality Journal, 12, Kluwer Academic Publishers , 2004.

HIRAMA, K. Engenharia de Software: qualidade e produtividade com tecnologia.
Elsevier. Rio de Janeiro , 2011.

HUANG, C.; KUO, S.; LYU, M. R. An Assessment of Testing-Effort Dependent
Software Reliability Growth Models, IEEE TRANSACTIONS ON RELIABILITY, Vol.
56, No. 2, 2007.

HUMPHREY, W. S. Managing the Software Process. Addison-Wesley. USA. 1989.

IMMONEN, A.; NIEMELA, E. Survey of reliability and availability prediction
methods from the viewpoint of software architecture, Springer-Verlag, 2007.

ISO. ISO/IEC 25010. Systems and software engineering -systems and software
Quality Requirements and Evaluation (SQuaRE) - System and Software Quality
Models. INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. Geneva, 2011.

JAFFAL, W.; TIAN, J. Defect Analysis and Reliability Assessment for Transactional
Web Applications. IEEE International Symposium on Software Reliability Engineering
Workshops, 2014.



62

KAPUR, P. K.; PHAM, H.; ANAND, S.; YADAV, K. A Unified Approach for Developing
Software Reliability Growth Models in the Presence of Imperfect Debugging and
Error Generation. IEEE Transactions on Reliability, Vol. 60, No. 1, 2011.

LI, X.; XIE, M.; HUI NG, S. Sensitivity analysis of release time of software reliability
models incorporating testing effort with multiple change-points. Applied
Mathematical Modelling, No. 34, 2010.

OKAMURA, H.; DOHI, T. Software Reliability Modeling Based on Mixed Poisson
Distributions. International Journal of Reliability, Quality and Safety Engineering, Vol.
15, No. 1, 2008.

OKAMURA, H.; ETANI, Y.; DOHI, T. A Multi-Factor Software Reliability Model Based
on Logistic Regression. IEEE 21st International Symposium on Software Reliability
Engineering, 2010.

PENG, R.; LI, Y. F; ZHANG, W. J.; HU, Q. P. Testing effort dependent software
reliability model for imperfect debugging process considering both detection and
correction. Reliability Engineering and System Safety 126, 2014.

PRESSMAN, R. S. Engenharia de software. Sdo Paulo: Pearson Education do Brasil,
1995.

QUADRI, S. M. K.; AHMAD, N.; FAROOG, S. U. Software Reliability Growth
modeling with Generalized Exponential testing—effort and optimal SOFTWARE
RELEASE policy. Global Journal of Computer Science and Technology Volume 11
Issue 2, 2011.

SINGH, V. B.; YADAYV, K.; KAPUR, R.; YADAVALLI, V. S. S. Considering the Fault
Dependency Concept with Debugging Time Lag in Software Reliability Growth
Modeling Using a Power Function of Testing Time. International Journal of
Automation and Computing, 2007.

SOMMERVILLE, I. Engenharia de Software. 9a. Edicdo. Addison-Wesley. Sado Paulo,
2011.

ULLAH, N.; MORISIO, M.; VETRO, A. A Comparative Analysis of Software Reliability
Growth Models using defects data of Closed and Open Source Software. |[EEE
35th Software Engineering Workshop, 2012.



63

WANG, W.; HEMMINGER, T. L.; TANG, M. A Moving Average Non-Homogeneous
Poisson Process Reliability Growth Model to Account for Software with Repair
and System Structures. IEEE TRANSACTIONS ON RELIABILITY, Vol. 56, No. 3,
2007.

YADAV, A.; KHAN, R. A. Critical Review on Software Reliability Models. International
Journal of Recent Trends in Engineering and Technology, Vol. 2, No. 3, 2009.

YAMADA, S. Software Reliability Modeling - Fundamentals and Applications.
Tottori, Springer , 2014.



ANEXOS

Anexo 1 — Relacdo de médulos e casos de uso do sistema usado no estudo de caso
Maodulo Caso de uso
M1 ucC-1
ucC-2
ucC-3
uc-4
UC-5
uC-6
ucC-7
ucC-8
ucC-9
UC-10
UC-11
UcC-12
M2 UC-13
UC-14
UC-15
UC-16
uC-17
UC-18
UC-19
uC-20
ucC-21
ucC-22
uC-23
ucC-24
UC-25
UC-26
ucC-27
uC-28
M3 UC-29
UC-30
UC-31
UC-32
UC-33
uUC-34
UC-35
UC-36
UC-37
UC-38
UC-39



65

Anexo 1 (continuagdo) — Relacdo de modulos e casos de uso do sistema usado no
estudo de caso
Maodulo Caso de uso
M4 uC-40
uc-41
ucC-42
ucC-43
ucC-44
UC-45
UC-46
ucC-47
M5 uC-48
UC-49
UC-50
UC-51
UC-52
UC-53
UC-54
UC-55
UC-56
UC-57
UC-58
UC-59
UC-60
UC-61
UC-62
uUC-63
uC-64
UC-65
UC-66
M6 uUC-67
UC-68
UC-69
UC-70
UC-71
UcC-72
UC-73
UC-74
UC-75
M7 UC-76
UC-77
UC-78
UC-79



66

Anexo 1 (continuagdo) — Relacdo de modulos e casos de uso do sistema usado no
estudo de caso
Maodulo Caso de uso
uC-80
uC-81
uC-82
uC-83
uC-84
M8 UC-85
UC-86
uC-87
uUC-88
UC-89
UC-90
UC-91
uC-92
UC-93
uC-94
UC-95
M9 UC-96
UC-97
UC-98
UC-99
M10 UC-100
UC-101
UC-102
UC-103
UC-104
UC-105
UC-106
uUC-107
UC-108
UC-109
UC-110
UC-111
ucC-112
UC-113
M11 UC-114
UC-115
UC-116
uC-117
UC-118
UC-119



67

Anexo 1 (concluséo) — Relacdo de modulos e casos de uso do sistema usado no estudo

de caso

Médulo Caso de uso
UC-120
ucC-121
uC-122
UC-123
uC-124
UC-125
UC-126
ucC-127
uC-128
UC-129
UC-130
UC-131
UC-132
UC-133

M12 UC-134
UC-135
UC-136
uC-137
UC-138
UC-139
UC-140
ucC-141
uC-142
UC-143
UC-144
UC-145
UC-146



Anexo 2 — Relac&o de horas acumuladas de teste e defeitos acumulados detectados
Horas Defeitos

2 0

6 4

8 5

48 6

90 12
190 13
192 16
222 16
224 16
226 21
234 21
236 21
238 21
240 21
258 22
260 26
262 26
264 27
390 27
404 36
414 37
416 38
424 39
448 39
450 49
452 52
524 54
526 55
528 55
532 55
534 55
536 55
542 55

816 55



Anexo 3 — Relacado de horas acumuladas de teste e cobertura de cédigo
Horas Cobertura

2 0

6 0.0294117647
8 0.0588235294
48 0.0882352941
90 0.1176470588
190 0.1470588235
192 0.1764705882
222 0.2058823529
224 0.2352941176
226 0.2647058824
234 0.2941176471
236 0.3235294118
238 0.3529411765
240 0.3823529412
258 0.4117647059
260 0.4411764706
262 0.4705882353
264 0.5

390 0.5294117647
404 0.5588235294
414 0.5882352941
416 0.6176470588
424 0.6470588235
448 0.6764705882
450 0.7058823529
452 0.7352941176
524 0.7647058824
526 0.7941176471
528 0.8235294118
532 0.8529411765
534 0.8823529412
536 0.9117647059
542 0.9411764706

816 0.9705882353



70

Anexo 4 — Relagdo de horas acumuladas de teste e previsdo de falhas acumuladas
detectadas pelo modelo Cai-Lyu

Horas Falhas
2 0
6 1
8 1
48 6
90 9
190 17
192 17
222 19
224 19
226 20
234 21
236 21
238 21
240 22
258 23
260 23
262 24
264 24
390 32
404 33
414 34
416 35
424 35
448 37
450 37
452 38
524 42
526 43
528 43
532 44
534 44
536 44
542 45

816 61



71

Anexo 5 — Relagdo de horas acumuladas de teste e previsdo de falhas acumuladas
detectadas pelo modelo Cai-Gokhale

Horas Falhas
2 1
6 3
8 4
48 12
90 17
190 28
192 29
222 32
224 32
226 32
234 33
236 33
238 33
240 33
258 35
260 35
262 35
264 35
390 46
404 47
414 48
416 48
424 49
448 51
450 51
452 51
524 57
526 57
528 57
532 57
534 57
536 57
542 58

816 77



