
PAULO ANDRÉS VILLEGAS VIERA

AVALIAÇÃO DE IMPACTO DE DEFEITOS DE SOFTWARE SOBRE O PROCESSO
DE PREVISÃO DE CONFIABILIDADE

São Paulo
2016

PAULO ANDRÉS VILLEGAS VIERA

AVALIAÇÃO DE IMPACTO DE DEFEITOS DE SOFTWARE SOBRE O PROCESSO
DE PREVISÃO DE CONFIABILIDADE

Monografia apresentada ao PECE – Pro-
grama de Educação Continuada em Enge-
nharia da Escola Politécnica da Universi-
dade de São Paulo como parte dos requi-
sitos para conclusão do curso de MBA em
Tecnologia de Software.

São Paulo
2016

PAULO ANDRÉS VILLEGAS VIERA

AVALIAÇÃO DE IMPACTO DE DEFEITOS DE SOFTWARE SOBRE O PROCESSO
DE PREVISÃO DE CONFIABILIDADE

Monografia apresentada ao PECE – Pro-
grama de Educação Continuada em Enge-
nharia da Escola Politécnica da Universi-
dade de São Paulo como parte dos requi-
sitos para a conclusão do curso de MBA
em Tecnologia de Software.

Área de Concentração: Tecnologia de
Software

Orientador: Prof. Dr. Kechi Hirama

São Paulo
2016

Catalogação-na-publicação

VIERA, PAULO
 AVALIAÇÃO DE IMPACTO DE DEFEITOS DE SOFTWARE SOBRE O
PROCESSO DE PREVISÃO DE CONFIABILIDADE / P. VIERA -- São Paulo,
2016.
 71 p.

 Monografia (MBA em Tecnologia de Software) - Escola Politécnica da
Universidade de São Paulo. PECE – Programa de Educação Continuada em
Engenharia.

 1.QUALIDADE DE SOFTWARE 2.CONFIABILIDADE DE SOFTWARE
3.MODELOS MATEMÁTICOS 4.ESTUDO DE CASO I.Universidade de São
Paulo. Escola Politécnica. PECE – Programa de Educação Continuada em
Engenharia II.t.

DEDICATÓRIA

Dedico este trabalho à Deus, à mi-

nha mãe e aos colegas de curso que,

apesar de não conseguirem comple-

tar a jornada, contribuíram para a

elaboração deste trabalho.

E à Raquel, SPS2R2!

AGRADECIMENTOS

À minha mãe pelo amor e apoio durante a jornada que chega à conclusão com este

trabalho.

Ao meu orientador Kechi Hirama pela orientação e apoio na elaboração deste

trabalho.

Aos colegas de curso, que apesar de alguns não chegarem até o fim do curso,

contribuíram para a elaboração deste trabalho.

RESUMO

O objetivo é investigar a relevância em se utilizar a taxa da correção de defeitos
junto com a de cobertura de código como métrica dentro de um modelo de previsão
de crescimento de confiabilidade de software. No levantamento bibliográfico,
constatou-se nas fontes estudadas a ausência da utilização da taxa de correção de
defeitos como uma métrica junto com a taxa de cobertura do código, embora tais
métricas tenham sido propostas em 2004 e 2007, respectivamente. Considerando-se
esse cenário, foram aplicadas as duas métricas em um estudo de caso de software
elaborado por uma instituição pública brasileira, a fim de avaliar o desempenho da
previsão de confiabilidade das métricas citadas num cenário real. Portanto, este
trabalho apresenta a análise dos resultados e perspectivas para pesquisas nesta
área de trabalho.

Palavras-chave: Software. Qualidade. Confiabilidade. Modelo de crescimento de
confiabilidade de software.

ABSTRACT

The aim of this study is to investigate the relevance of using the fault removal rate
combined with code coverage rate as metrics in a software reliability growth model.
While researching the specialized literature, it was noticed the absence of the use of
fault removal rate as a metric along with the code coverage rate, even though these
metrics have been proposed in 2004 and 2007, respectively. This study applied the
two metrics using a case study of a software developed by a Brazilian public
company in order to evaluate the performance of reliability estimation in a real-world
scenario. This paper presents the results of the analysis and suggests directions for
future research.

Keywords: Software. Quality. Reliability. Software reliability growth model.

LISTA DE FIGURAS

Pág.

Figura 1 – Curva de falhas acumuladas durante a fase de testes .……................... 46

Figura 2 – Curva do modelo Cai-Lyu em relação à curva de falhas acumuladas

………………………………………………………………………………....................... 48

Figura 3 – Curva do modelo Cai-Gokhale em relação à curva de falhas acumuladas

………………………………………………………………………………....................... 49

Figura 4 – Regiões de interesse para análise da curva de falhas acumuladas

………………………………………………………………………………....................... 51

SUMÁRIO

Pág.

1. INTRODUÇÃO ………………………………………………………………………... 11

1.1 Motivações ……………………………………………………………………………. 11

1.2 Objetivo ……………………………………………………………………………….. 12

1.3 Justificativa ……………………………………………………………………………. 12

1.4 Estrutura do Trabalho ………………………………………………………………... 14

2. QUALIDADE DE SOFTWARE ………………………………………………………. 17

2.1 Modelo de Qualidade da norma ISO/IEC 25010 …………………………………. 19

2.1.1 Adequação ………………………………………………………………………….. 19

2.1.2 Eficiência de desempenho ………………………………………………………... 19

2.1.3 Compatibilidade ……………………………………………………………………. 20

2.1.4 Usabilidade …………………………………………………………………………. 20

2.1.5 Confiabilidade ………………………………………………………………………. 21

2.1.6 Proteção …………………………………………………………………………….. 21

2.1.7 Manutenibilidade …………………………………………………………………… 22

2.1.8 Portabilidade ……………………………………………………………………….. 23

2.2 Métrica e medida …………………………………………………………………….. 23

2.3 Erro, defeito e falha ………………………………………………………………….. 24

2.4 Considerações do Capítulo .. 24

3. MODELOS DE CRESCIMENTO DE CONFIABILIDADE DE SOFTWARE ……. 26

3.1 Confiabilidade de Software …………………………………………………………. 26

3.2 Métodos para a Avaliação da Confiabilidade de Software ……………………… 27

3.2.1 Modelo de Crescimento de Confiabilidade de Software ………………………. 28

3.2.2 Modelos de Confiabilidade do Tipo Caixa-Preta ……………………………….. 30

3.2.3 Modelos de Confiabilidade do Tipo Caixa Branca ……………………………... 31

3.2.4 Modelos Matemáticos ……………………………………………………………... 31

3.2.4.1 Modelo de Processo Poisson Discreto Não-Homogêneo …………………... 32

3.3 Utilização de um Fator ……………………………………………………...……….. 33

3.3.1 Utilização de dois Fatores ………………………………………………………… 34

3.3.2 Agregação de mais de dois Fatores ……………………………………………... 34

3.4 Incerteza Limite ………………………………………………………………………. 35

3.5 Depuração Imperfeita ………………………………………………………………... 36

3.6 Taxa de Remoção de Defeitos ……………………………………………………… 37

3.7 Considerações do Capítulo …………………………………………………………. 38

4. MODELO CAI-LYU E MÉTODO DE GOKHALE …………………………………... 40

4.1 Modelo Cai-Lyu ………………………………………………………………………. 40

4.2 Estudo de Caso do Modelo Cai-Lyu ……………………………………………….. 42

4.3 Limites do Modelo Cai-Lyu ………………………………………………………….. 43

4.4 Método de Gokhale ………………………………………………………………….. 43

4.5 Considerações do Capítulo .. 44

5. MODELO PROPOSTO ……………………………………………………………….. 46

6. APLICAÇÃO E ANÁLISE ……………………………………………………………. 49

7. CONSIDERAÇÕES FINAIS ………………………………………………………….. 58

7.1 Conclusões …………………………………………………………………………… 58

7.2 Contribuições do Trabalho ………………………………………………………….. 59

7.3 Trabalhos Futuros ……………………………………………………………………. 59

REFERÊNCIAS …............................…………………………………………………… 61

ANEXOS …………………………………………………………………………………... 64

11

1. INTRODUÇÃO

Este capítulo apresenta as motivações, o objetivo, as justificativas e a estrutura do

trabalho.

1.1 Motivações

A utilização de software é cada vez mais intensa nas mais diversas funções

empresariais e pessoais. Com isso, existe demanda para o desenvolvimento de

software de alta qualidade. No entanto, a qualidade destes é um fator importante.

Neste sentido, ISO/IEC 25010 (ISO, 2011) apresenta um modelo com essa finalidade,

de forma que um conjunto de características prevê uma estrutura de trabalho que

permite especificar requisitos de qualidade e avaliar a qualidade de um produto. Para

tanto, o modelo é composto por oito características: adequação funcional, eficiência de

desempenho, compatibilidade, usabilidade, confiabilidade, proteção, manutenibilidade e

portabilidade.

Segundo a ISO/IEC 25010 (ISO, 2011), confiabilidade é o grau no qual um sistema,

software ou componente funciona sob determinadas condições por um determinado

período de tempo. Por isso, a confiabilidde é uma das características mais importantes

referentes à qualidade de software (YAMADA , 2014, p. 1).

Assim, para mensurar e gerenciar a confiabilidade do software, modelos matemáticos,

tipicamente NHPP (do inglês, Non-Homogeneous Poisson Process), podem ser usados

para fazer previsões sobre a quantidade de defeitos presentes no software em um dado

momento e a possibilidade de encontrar novos defeitos durante a execução de um

software por um determinado período (JAFFAL; TIAN, 2014, p. 246). Tais modelos

12

matemáticos são chamados de SRGM (do inglês, Software Reliability Growth Model).

Um SRGM é uma ferramenta crítica para controlar a qualidade do software. No entanto,

os modelos enfrentam dificuldades para representar exatamente, por meio de modelos

matemáticos, o crescimento da confiabilidade de software no mundo real (OKAMURA;

DOHI, 2008, p. 19). Além disso, nenhum SRGM proposto até o momento conseguiu

atuar em todos os cenários possíveis de desenvolvimento de software (ALMERING et

al., 2007, p. 87; IMMONEN;NIEMELA, 2007, p. 49), sendo necessário um cuidado extra

para se determinar o modelo mais adequado a ser aplicado, já que um modelo

inadequado poderia fornecer dados que resultassem em decisões equivocadas dentro

de um projeto de desenvolvimento de software (ULLAH; MORISO;VETRO, 2012, p.

188).

1.2 Objetivo

O objetivo do trabalho é avaliar a influência que o impacto dos defeitos encontrados

exerce sobre o software no processo de previsão de confiabilidade do software.

Também, o SRGM proposto por Cai e Lyu (CAI; LYU, 2007, p. 20), juntamente com o

método proposto por Gokhale, Lyu e Trivedi (2004, p. 218) para calcular a taxa de

remoção de defeitos foram combinados. O modelo resultante foi chamado de modelo

Cai-Gokhale e este foi aplicado em um estudo de caso de software de workflow

desenvolvido por uma instituição pública brasileira. A influência da taxa de remoção de

defeitos sobre a previsão de confiabilidade foi discutida.

1.3 Justificativa

Nos últimos anos, diversos SRGM foram propostos utilizando-se diversas abordagens e

métricas. Os primeiros modelos utilizaram uma única métrica. Adicionando-se outras

13

métricas, o desempenho da previsão de confiabilidade apresentou melhoras. Huang,

Kuo e Lyu(2007, p. 198) apresentaram dois SRGSM, usando o esforço de teste como

uma métrica sob o cenário de depuração perfeita e imperfeita, isto é, onde um ou mais

defeitos podem ser inseridos no processo de remoção de um defeito. Já Wang, Moriso

e Vetro (2007, p. 411) incorporaram a estrutura do software como um fator de

influência, mensurando a confiabilidade de cada componente do software na previsão

de confiabilidade do software como um todo. Por fim, Singh et al. (2007, p. 360)

consideraram a dependência entre defeitos, isto é, não encarando cada um como

independente de outros, mas sim, eventualmente, relacionando defeitos que provocam

outros defeitos, resultando em um efeito em cascata.

No entanto, o aumento de métricas utilizadas aumenta a incerteza ao se obter as

próprias medidas. Isto afeta a previsão de confiabilidade (LI; XIE; HUING, 2010, p.

3560), mesmo que existam maneiras de determinar o grau de incerteza dentro de uma

previsão de confiabilidade (CHANDRAN; DIMOV; PUNNEKKAT, 2010, p. 227). Assim,

mesmo a maneira como o modelo lida com as falhas, em si, afeta a previsão, quer seja

considerando-se uma quantidade limitada ou ilimitada de possíveis defeitos no software

(YADAV; KHAN, 2009, p. 116).

Okamura, Etani e Dohi (2010, p. 32) abordaram a questão da incerteza no momento de

obtenção das medidas, utilizando técnicas estatísticas para gerar um SRGM mais

simples e, consequentemente, com um nível menor de incerteza na previsão de

confiabilidade. Quadri, Ahmad e Faroog (2011, p. 7), por sua vez, apresentaram um

modelo onde o esforço de teste seguiu uma distribuição exponencial generalizada,

assumindo que a taxa de surgimento de defeitos e o esforço de teste são proporcionais

à quantidade restante de defeitos no software. Já Kapur, Pham e Anand (2011, p. 333)

observaram que, a remoção de apenas um defeito pode provocar o surgimento de

outros defeitos e a quantidade de defeitos removidos não necessariamente

corresponde à mesma quantidade de defeitos observados. Por fim, Peng et al. (2014, p.

14

38) consideraram o esforço de detecção de defeitos e o esforço de correção dos

mesmos como dois fatores distintos que podem ser incorporados em outros SRGM.

No levantamento bibliográfico deste trabalho, constatou-se que dois fatores que

repetidamente aparecem nos SRGM são: o tempo gasto com testes, como no modelo

apresentado por Singh et al. (2007, p. 361), e o processo de depuração, ou correção

de defeito (ULLAH; MORISIO; VETRO, 2012, p. 187). Segundo Gokhale, Lyu e Trivedi

(2004, p. 213), um fator que deve ser levado em consideração é o tempo necessário

para corrigir um defeito. Também, Gokhale, Lyu e Trivedi (2004, p. 213) forneceram um

método para correlacionar a taxa de detecção de defeitos com a taxa de remoção de

defeitos. Durante os estudos para este trabalho, não foram encontrados modelos que

utilizassem tanto a taxa de cobertura de código quanto a taxa de correção de defeitos

como fatores para previsão de confiabilidade.

Este trabalho parte do pressuposto que o tempo de remoção de um defeito impacta na

taxa de detecção de novos defeitos, seja porque a equipe de testes precisa aguardar

que os defeitos sejam removidos (sob demanda ou por lote), seja porque defeitos não-

detectados foram removidos juntos com os defeitos já detectados.

Portanto, o presente trabalho verifica a influência que a taxa de remoção de defeitos

exerceu na previsão de confiabilidade, junto com a taxa de cobertura de código. Isso se

dá por meio da aplicação de um SRGM utilizando esses dois fatores, fazendo uma

análise do impacto da taxa de remoção de defeitos sobre a previsibilidade de

confiabilidade de software.

15

1.4 Estrutura do Trabalho

Este trabalho está organizado na seguinte estrutura:

Capitulo 1 – Introdução – Este capítulo descreve as motivações, o objetivo, as

justificativas e estrutura do trabalho.

Capítulo 2 – Qualidade de Software – Este capítulo trata de definições de qualidade de

software, sua influência no desenvolvimento de software, especialmente na fase de

testes. Também, define os termos usados como erro, defeito e falha, métrica e medida e

confiabilidade de software.

Capítulo 3 – Modelos de Crescimento de Confiabilidade de Software – Este capítulo

trata de modelos de crescimento de confiabilidade de software, modelos matemáticos

envolvidos e a história da evolução destes, a aplicação de um ou dois fatores e o limite

de fatores impostos pelas incertezas inerentes ao processo de previsão de

confiabilidade de software.

Capítulo 4 – Modelo de Cai-Lyu e Método de Gokhale – Este capítulo apresenta o

modelo proposto por Cai e Lyu (2007), suas características e flexibilidade que o tornam

uma proposta interessante para análise proposta pelo presente trabalho. Também é

apresentado o método de Gokhale, Lyu e Trivedi (2004), para estimar a taxa de

remoção de defeitos e a influência que esta exerce sobre a previsão de confiabilidade

de software.

16

Capítulo 5 – Modelo Proposto – Este capítulo apresenta uma proposta para avaliar a

influência do impacto de defeitos sobre a previsão de confiabilidade de software. De

forma que o SRGM proposto por Cai e Lyu (2007) é combinado com o método de

Gokhale, Lyu e Trivedi (2004), sendo o modelo resultante chamado de modelo Cai-

Gokhale.

Capítulo 6 – Aplicação e Análise – Este capítulo apresenta a aplicação do modelo Cai-

Gokhale em dados coletados durante o desenvolvimento de um software por uma

instituição pública brasileira, comparando-se os resultados do modelo Cai-Gokhale com

o modelo Cai-Lyu.

Capitulo 7 – Considerações Finais – Este capítulo apresenta conclusões do trabalho,

contribuições e aponta possíveis trabalhos futuros sobre o tema.

REFERÊNCIAS – Apresenta a lista de fontes usadas para a elaboração deste trabalho.

ANEXOS – Apresenta as tabelas com os dados utilizados no estudo de caso utilizado

no Capítulo 6.

17

2. QUALIDADE DE SOFTWARE

A definição de qualidade é difícil, assim com é ainda mais difícil garantir a qualidade de

algum produto (HIRAMA, 2011). O software é um produto resultante da necessidade do

cliente e, como produto, precisa ter qualidade. Considerando-se que a utilização de

software é cada vez mais intensa nas diversas funções empresariais e pessoais, há

demanda para software de qualidade.

A qualidade de software é uma combinação complexa de características que variam de

acordo com as aplicações e clientes que o solicitam. Também, as necessidades de

software solicitadas pelos clientes estão tornando-se cada vez mais robustas, e assim,

como resposta para atender a essa gama de necessidades surgem diversas

tecnologias (PRESSMAN, 1995).

Além disso, tem havido uma conscientização maior da importância do gerenciamento

de qualidade de software e da adoção de técnicas de gerenciamento de qualidade

envolvidas no desenvolvimento de software. Alcançar um alto grau de qualidade nos

produtos ou serviços é o principal objetivo da maioria das organizações. Assim,

desenvolver e entregar produtos com baixa qualidade e reparar os problemas e as

deficiências existentes depois que os produtos foram entregues ao usuário, não é mais

aceitável atualmente (SOMMERVILLE, 2007).

Para se chegar em um produto de software ou para a manutenção de um já existente

são executadas diversas atividades, gerando-se diferentes subprodutos que são

necessários para a concepção do software. Essas atividades podem ser agrupadas em

processos, os quais definem, em geral, o conjunto de atividades, ferramentas e

métodos utilizados no desenvolvimento de um determinado produto (HUMPHREY,

1989, p. 284).

18

Pressman (1995) reforçou a tese que diversos esforços foram feitos para desenvolver

medições precisas da qualidade de software, sendo que esses, às vezes, frustraram-se

pela natureza subjetiva da atividade. Neste contexto, visando avaliar a qualidade de

produto de software, foram criadas e atualizadas periodicamente normas internacionais

e nacionais para tal finalidade.

Segundo a norma de qualidade ISO/IEC 25010 (ISO, 2011), a qualidade de software é

definida como “o grau em que o sistema satisfaz as necessidades implícitas e explícitas

de seus vários stakeholders”. Isto significa que as necessidades explícitas são

expressas na definição de requisitos propostos pelo cliente, ao passo que as

necessidades implícitas são aquelas que podem não estar expressas nos documentos,

mas que são necessárias aos clientes.

O modelo apresentado na norma ISO/IEC 25010 (ISO, 2011) consiste em um modelo

de qualidade composto por um conjunto de características que resultam em uma

estrutura de trabalho que permite especificar requerimentos de qualidade e avaliar a

qualidade de um produto.

A qualidade pode ser medida ao longo do processo de engenharia de software e depois

que este foi entregue ao cliente e aos usuários. Na maioria dos empreendimentos

técnicos, as medições de qualidade ajudam os profissionais envolvidos a entender o

processo técnico usado para desenvolver um produto, como também o próprio produto.

O processo é medido com a intenção de aprimorá-lo. Assim, o produto também é

medido com a finalidade de aumentar a sua qualidade (PRESSMAN, 1995).

19

2.1 Modelo de Qualidade da Norma ISO/IEC 25010

O modelo de qualidade da norma ISO/IEC 25010 é composto por oito características: 1)

adequação funcional; 2) eficiência de desempenho; 3) compatibilidade; 4) usabilidade;

5) confiabilidade; 6) proteção; 7) manutenibilidade; e 8) portabilidade (ISO, 2011).

2.1.1 Adequação funcional

A adequação funcional é o grau em que um produto ou sistema fornece funções que

correspondam às necessidades explícitas e implícitas quando usado sob condições

especificadas. Ela é composto por três subcaracterísticas: 1) completude funcional,

que é o grau em que o conjunto de funções abrange todas as tarefas e objetivos

específicos dos usuários; 2) correção funcional, que é o grau ao qual um produto ou

sistema fornece os resultados corretos com a precisão necessária; e 3)

adequabilidade funcional, que é o grau em que as funções facilitam a realização das

tarefas e objetivos especificados.

2.1.2 Eficiência de desempenho

A eficiência de desempenho é a eficiência do produto ou sistema em relação à

quantidade de recursos utilizados sob condições estabelecidas.

É composta por três subcaracterísticas: 1) comportamento temporal, que é grau em

que os tempos de resposta e de processamento e taxas de transferência de um produto

ou sistema, no desempenho das suas funções, atendem aos requisitos; 2) utilização

de recursos, que é o grau em que as quantidades e tipos de recursos usados em um

produto ou sistema, no desempenho das suas funções, para atender aos requisitos; e

20

3) capacidade, que é o grau em que os limites máximos de um parâmetro, de produto

ou sistema, atendem os requisitos.

2.1.3 Compatibilidade

A compatibilidade é o grau em que um produto, sistema ou componente pode trocar

informações com outros produtos, sistemas ou componentes, e/ou realizar suas

funções necessárias, enquanto compartilha o mesmo ambiente de hardware ou

software. Ela é composto por dois subcaracterísticas: 1) co-existência, que é o grau

em que um produto pode desempenhar as suas funções de forma eficiente enquanto

compartilha um ambiente e/ou recursos comums com outros produtos, sem impacto

negativo em qualquer outro produto; e 2) interoperabilidade, que é o grau em que dois

ou mais sistemas, produtos ou componentes podem trocar informações e utilizar as

informações trocadas.

2.1.4 Usabilidade

A usabilidade é o grau em que um produto ou sistema pode ser usado por usuários

específicos para alcançar objetivos específicos com efetividade, eficiência e satisfação

em um contexto de uso específico.

Ela é composta por seis subcaracterísticas: 1) reconhecimento de adequação, que é

o grau em que os usuários podem reconhecer se um produto ou sistema é adequado

para as suas necessidades; 2) capacidade de aprendizado, que é o grau em que um

produto ou sistema pode ser usado por usuários específicos para alcançar objetivos

específicos de aprendizagem para usar o produto ou sistema com eficácia, a eficiência,

a inexistência de risco e satisfação dentro de um contexto de uso específico; 3)

21

operabilidade, que é o grau em que um produto ou sistema tem atributos que o tornam

fácil de operar e controlar; 4) proteção de erros do usuário, que é o grau em que um

sistema protege os usuários de cometerem erros; 5) estética da interface do usuário,

que é o grau em que uma interface do produto ou sistema permite a interação

agradável e satisfatória para o usuário; e 6) acessibilidade, que é o grau cujo produto

ou sistema pode ser usado por pessoas com a gama mais ampla de características e

capacidades para atingir um objetivo específico em um contexto de uso.

2.1.5 Confiabilidade

A confiabilidade é o grau em que um sistema, produto ou componente executa funções

especificadas sob condições específicas por um período de tempo estabelecido. Ela é

composta por quatro subcaracterísticas: 1) maturidade, que é o grau em que um

sistema, produto ou componente satisfaz as necessidades de confiabilidade em

condições normais de operação; 2) disponibilidade, que é o grau em que um sistema,

produto ou componente está operacional e acessível quando for necessária sua

utilização; 3) tolerância a defeito, que é o grau em que um sistema, produto ou

componente opera como pretendido, apesar da presença de defeitos de hardware ou

software; e 4) recuperabilidade, que é o grau em que, no caso de uma interrupção ou

uma falha, o produto ou sistema pode recuperar os dados diretamente afetados e re-

estabelecer o estado desejado do sistema.

2.1.6 Proteção

A proteção é o grau no qual um produto ou sistema protege informações e dados, de

modo que as pessoas, outros produtos ou sistemas possuam o apropriado grau de

acesso aos dados, conforme seus respectivos tipos e níveis de autorização. Ela é

22

composto por cinco subcaracterísticas: 1) confidencialidade, que é o grau em que um

produto ou sistema garante que os dados estarão acessíveis somente por pessoas

autorizadas a ter acesso; 2) integridade, que é o grau em que um sistema, produto ou

componente impede o acesso não autorizado, ou alteração de, programas de

computador ou dados; 3) não-repúdio, que é o grau em que as ações ou eventos

ocorridos dentro do produto ou sistema podem ter suas ocorrências provadas, de modo

que os eventos ou ações não podem ser repudiados mais tarde; 4) atribuição, que é o

grau em que as ações de uma entidade pode ser atribuídas exclusivamente a ela; e 5)

autenticidade, que é o grau em que a identidade de um assunto ou recurso podem ser

provado como único reivindicados.

2.1.7 Manutenibilidade

A manutenibilidade é grau de eficácia e eficiência com que um produto ou sistema pode

ser modificado pela designada equipe de manutenção.

Ela é composta por cinco subcaracterísticas: 1) modularidade, que é o grau em que

um programa de computador ou sistema é composto por componentes discretos, de tal

forma que uma mudança em um determinado componente tem impacto mínimo sobre

os demais; 2) reusabilidade, que é grau em que um componente pode ser utilizado em

mais de um sistema, ou na construção de outros componentes; 3) analisabilidade, que

é o grau de eficácia e a eficiência com a qual é possível avaliar o impacto de uma

mudança sobre uma ou mais partes de um produto ou de um sistema, quer seja para

diagnosticar deficiências ou causas de falhas de um produto, bem como para identificar

componentes a serem modificados; 4) modificabilidade, que é o grau cujo produto ou

sistema pode ser modificado de forma eficaz e eficiente sem a introdução de defeitos

ou degradação da qualidade do produto existente; e 5) testabilidade, que é o grau de

eficácia e eficiência com a qual é possível estabelecer critérios de teste de um sistema,

23

produto ou componente de modo que testes podem ser realizados para determinar se

esses critérios foram ou não cumpridos.

2.1.8 Portabilidade

A portabilidade é o grau de eficácia e eficiência com que um sistema, produto ou

componente pode ser transferida de um hardware, software ou outro ambiente

operacional, assim como para outro uso. Ela é composta por três subcaracterísticas: 1)

adaptabilidade, que é o grau cujo produto ou sistema pode eficaz e eficientemente ser

adaptado para outro hardware, software ou outros ambientes operacionais ou de uso;

2) facilidade de instalação, que é o grau de eficácia e eficiência com que um produto

ou sistema pode ser instalado e/ou removido de um ambiente especifico com sucesso;

e 3) facilidade de substituição, que é o grau ao qual um produto pode substituir outro

produto de software especificado para o mesmo fim no mesmo ambiente.

No presente trabalho utilizou-se a definição da ISO/IEC 25010 (ISO, 2011) para

confiabilidade como parâmetro de qualidade de software.

2.2 Métrica e Medida

Métrica é definida por Bohem, Brown e Lipow (1976) como a extensão ou grau em que

um sistema ou produto possui ou exibe uma certa característica. Métricas surgem da

necessidade de avaliar um artefato objetivamente e são utilizadas no desenvolvimento

de software para assegurar características como a confiabilidade. Medida é a indicação

quantitativa de uma certa característica de um sistema ou produto.

24

2.3 Erro, Defeito e Falha

Erro é a ação humana que produz um resultado incorreto, por exemplo, quando o

desenvolvedor, ao interpretar equivocadamente os requisitos do software, comete erros

na codificação (HIRAMA, 2011).

Já o defeito é uma implementação incorreta dentro de um artefato, seja um defeito no

software ou dentro de um manual de instruções. Eles são inseridos em artefatos por

meio de erros (HIRAMA, 2011).

Por fim, falha é a incapacidade de um sistema ou componente em executar as funções

requeridas dentro de um nível de desempenho definido. Assim, a falha pode ser

entendida como a manifestação de um defeito dentro de um artefato (HIRAMA, 2011).

Com bases nestas definições, é possível afirmar que erros causam defeitos, mas

defeitos não necessariamente produzem falhas. No entanto, erros podem ocorrer em

qualquer fase de desenvolvimento de software.

2.4 Considerações do Capítulo

O desenvolvimento de software envolve a execução de diversas atividades gerando-se

diferentes subprodutos que são necessários para a concepção do software

(HUMPHREY, 1989, p. 284). O software desenvolvido visa satisfazer as necessidades

implícitas e explícitas dos stakeholders, e o grau em que o software satisfaz tais

necessidades é a definição da ISO/IEC 25010 (ISO, 2011) para qualidade.

25

Durante o desenvolvimento, erros introduzidos por ação humana afetam diretamente a

qualidade do software, produzindo resultados incorretos. Nesse contexto, a

confiabilidade do software é o grau em que um sistema, produto ou componente

executa funções especificadas sob condições específicas por um período de tempo

estabelecido (ISO, 2011). Ou seja, por quanto tempo um software consegue executar

as funções esperadas pelos stakeholders sem a ocorrência de uma falha.

26

3. MODELOS DE CRESCIMENTO DE CONFIABILIDADE DE SOFTWARE

Uma ferramenta importante para ajudar um gestor de projeto de software a aferir a sua

confiabilidade, isto é, por quanto tempo o software pode funcionar sem que falhas

ocorram, é o modelo de crescimento de confiabilidade de software, ou como é

conhecido: SRGM.

Assim, para utilizar tal modelo, é preciso coletar informações sobre o projeto, sendo que

cada SRGM possui um ou mais tipos de informação como entrada, também chamados

de fatores.

3.1 Confiabilidade de Software

Segundo Sommerville (2011, p. 656), os interessados em um software possuem

diversas necessidades que vão além das suas funcionalidades. Portanto, o nível no

qual o software atende a todas essas necessidades, além de atender as

funcionalidades necessárias, é o nível de qualidade do sistema.

Nesse sentido, uma dessas necessidades é a confiabilidade do software. Segundo a

ISO/IEC 25010 (ISO, 2011), confiabilidade é o grau no qual um sistema, software ou

componente funciona sob determinadas condições por um determinado período de

tempo. Desta maneira, a confiabilidade pode ser descrita como a probabilidade de um

software apresentar o resultado esperado durante um certo tempo. Porém, isto é

diferente de disponibilidade, onde o software apresenta o resultado esperado no

momento que o usuário solicita o resultado. Logo, a confiabilidade implica em uso

contínuo do software (SOMMERVILLE, 2011, p. 295).

27

Segundo Yamada (2014, p. 1), a confiabilidade de software é uma das características

mais importantes referentes à qualidade. Assim, é importante ressaltar que a

confiabilidade está ligada ao cenário de uso do software, sendo que o mesmo pode ter

uma confiabilidade diferente para um usuário iniciante, do que para um usuário

avançado, pois este pode explorar mais recursos e encontrar defeitos que o usuário

iniciante não encontraria.

De acordo com Sommerville (2011, p. 300), não é possível ter plena certeza da

completa ausência de defeitos em um software. Sendo assim, a confiabilidade pode ser

estimada calculando-se a provável quantidade de defeitos persistentes em um software.

Por isso, são efetuados testes levando-se em consideração os dados obtidos durante a

revisão de especificações, design e codificação.

Para tanto, um modelo adequado de dados de teste ajuda a identificar a taxa de

defeitos detectados em um software (CHANDRAN; DIMOV; PUNNEKKAT, 2010, p.

229). Assim, é possível estimar a quantidade de defeitos ainda presentes no software e,

portanto, estimar durante quanto tempo o software apresentará o resultado esperado.

Por fim, a confiabilidade também pode ser usada para tomar decisões estratégicas

sobre o software como, por exemplo, indicar a quantidade de tempo e recursos que

devem ser aplicados para eliminar mais defeitos. Sendo que Okamura, Etani e Dohi

(2010, p. 31) defenderam a tese de que a confiabilidade pode ser utilizada para

determinar o momento do lançamento de um software no mercado.

3.2 Métodos para a Avaliação da Confiabilidade de Software

Segundo Chandran, Dimov e Punnekkat (2010, p. 229), há três grupos de métodos para

avaliar a confiabilidade de um software: testes, simulação e feedback de usuários.

28

De acordo com Sommerville (2011, p. 206), o processo de testes possui dois objetivos

distintos: demonstrar que o software atende às especificações e descobrir falhas para

as devidas correções. Para isso, a avaliação de confiabilidade de software utiliza os

dados coletados durante a busca de falhas. Portanto, o teste de software é a

abordagem mais comum, sendo um elemento crítico na garantia de qualidade de

software , representando a revisão das suas especificações, design e codificação.

O segundo método, isto é, a simulação, ao contrário do método de teste para avaliar a

confiabilidade, parte do pressuposto de que a confiabilidade de software não depende

somente de sua estrutura, mas também do tempo de execução, frequência de

reutilização de componentes, tempo gasto, interações entre os componentes, etc

(CHANDRAN; DIMOV; PUNNEKKAT, 2010, p. 230). Assim, o projeto dos requisitos e

código da estrutura do software são revistos e a sua execução fornece o desempenho.

Por fim, outra abordagem para se obter dados que avaliem a confiabilidade de um

software é por meio do feedback dos usuários. De modo diferente, os dados são

obtidos após o lançamento do software no mercado e refletem a sua real utilização

pelos usuários. Por isso, diferente da abordagem de testes, os dados provém do

comportamento imprevisível do usuário, ao invés de usar um modelo de dados de teste

ou testes planejados. Tipicamente, os dados sobre falhas do sistema são coletados por

relatórios enviados pelo usuário e, posteriormente, cruzados com a frequência dos

relatórios, a fim de se estimar a quantidade restante de defeitos, avaliando-se a

confiabilidade do software.

3.2.1 Modelo de Crescimento de Confiabilidade de Software

Para avaliar a confiabilidade do software, a abordagem mais comum é a utilização de

testes e coleta de dados sobre os resultados de falhas nos testes. Porém, quando os

29

dados de falha não estão disponíveis ou quando as falhas não são observadas durante

os testes, pode-se adotar uma abordagem de estimação bayesiana para estimar a

probabilidade de uma falha surgir (CHANDRAN; DIMOV; PUNNEKKAT, 2010, p. 229).

Segundo Jaffal e Tian (2014, p. 247), para fazer a previsão da quantidade de defeitos

restantes no software e o tempo de execução necessário para as correspondentes

falhas manifestarem-se, modelos matemáticos podem ser usados. Tais modelos,

segundo Ullah, Morisio e Vetro (2012, p. 187), assumem que a confiabilidade do

software cresce após um defeito ser detectado e consertado. Com essa previsão, é

possível decidir se é válido prosseguir com os testes ou interrompê-los.

Esses modelos matemáticos são chamados de SRGM (Software Reliability Growth

Model), sendo que Yamada (2014, p. 40) definiu o SRGM como um modelo de análise

matemática com a finalidade de medir e avaliar quantitativamente a confiabilidade do

software. Desta maneira, o SRGM pode ser aplicado durante o processo de projeto,

codificação, integração, testes e após o lançamento do software. No entanto, aplicar um

SRGM durante o projeto e codificação não gera resultados aceitáveis, já que o software

ainda é instável e não possui todas as funcionalidades necessárias, dependendo do

estágio de desenvolvimento.

Embora seja possível executar um SRGM após o lançamento, isto pode ser tardio para

evitar impactos negativos com os usuários. Por isso, Almering et al. (2007, p. 83)

argumentaram que o momento ideal para executar um SRGM é durante o processo de

testes.

Os modelos de confiabilidade, segundo Ullah, Morisio e Vetro (2012, p. 187), podem ser

classificados de acordo com o tipo de teste de software que é realizado:

– quando o teste considera apenas os requisitos, sem atentar-se à estrutura interna do

software, o teste é chamado de caixa-preta, sendo que este considera apenas o

30

resultado da interação do software com os dados de entrada. Por isso, os modelos de

confiabilidade que utilizam dados provenientes deste tipo de teste são chamados de

modelos de confiabilidade do tipo caixa-preta;

– quando o teste considera, além dos requisitos, a estrutura interna e os componentes

do software, o teste é chamado de caixa-branca e os modelos de confiabilidade que

consideram a estrutura interna do software para estimar a confiabilidade são chamados

de modelos de confiabilidade do tipo caixa-branca.

3.2.2 Modelos de Confiabilidade do Tipo Caixa-Preta

Os modelos de confiabilidade do tipo caixa-preta são classificados em diferentes tipos:

modelos de previsão antecipada, SRGM, modelos baseados no domínio de entrada e

modelos híbridos de caixa-preta (ULLAH; MORISIO; VETRO, 2012, p. 187).

Geralmente, os modelos de caixa-preta são usados quando os dados dos resultados de

teste ou informações sobre falhas, tipicamente provenientes de um feedback de

usuários, estão disponíveis. Sabe-se que os modelos do tipo caixa-preta usam as

informações de falha do software observadas e fazem previsões sobre falhas futuras,

refletindo, assim, o crescimento da confiabilidade do software.

Segundo Yamada (2014), os SRGMs são classificados em três grandes grupos:

modelos finitos, modelos infinitos com base no número total de falhas expressas com

tempo infinito e modelos bayesianos. A sua notoriedade dá-se pelo fato de os SRGMs

estão em uso desde início dos anos 1970.

31

3.2.3 Modelos de Confiabilidade do Tipo Caixa Branca

De acordo com a forma de apresentação da estrutura interna de sistemas de software,

Chandran, Dimov e Punnekkat (2010, p. 230) dividiram os modelos de confiabilidade do

tipo caixa-branca em três subgrupos principais: modelos baseados em estados finitos,

modelos baseados em caminhos e modelos aditivos.

Também, utilizando-se a abordagem da avaliação de confiabilidade do tipo caixa-

branca, há quatro passos básicos: identificação de módulos/componentes que

constituem o sistema de software, construção de modelo de arquitetura, definição da

falha de comportamento dos componentes e combinação do modelo de arquitetura com

a definição da falha de comportamento dos componentes.

3.2.4 Modelos Matemáticos

O SRGM é um modelo matemático que especifica a forma geral do processo de falha

de software em função de fatores como a introdução de defeitos, a remoção de defeitos

e o ambiente operacional. Assim, um SRGM é composto por diferentes parâmetros. E,

nesse sentido, parâmetro é determinado como uma constante ou variável arbitrária que

aparece em uma expressão matemática, cada valor do que restringe ou determina a

forma específica de uma expressão.

Sabe-se que a taxa de defeitos, isto é, defeitos por unidade de tempo, de um sistema

de software é, geralmente, decrescente ao longo do processo de desenvolvimento,

devido ao processo de detecção e remoção de defeitos. Desta maneira, a modelagem

de confiabilidade é feita para estimar a forma da curva da taxa de defeitos por meio de

estimativas estatísticas dos parâmetros associados ao modelo selecionado.

32

Segundo Ullah, Morisio e Vetro (2012, p. 187), a modelagem da curva de taxa de

defeitos tem dois objetivos: estimar o tempo extra de execução necessária de teste

para atender a um objetivo específico de confiabilidade e para identificar a

confiabilidade esperada do software quando o produto é liberado.

3.2.4.1 Modelo de Processo Poisson Discreto Não-Homogêneo

Um processo Poisson é um conceito matemático usado, comumente, em estatística e

que representa uma série de eventos aleatórios distribuídos ao longo do tempo. Por

isso, o intervalo de tempo entre dois eventos próximos segue uma distribuição

exponencial. Como consequência, o processo Poisson não-homogêneo permite que a

taxa de aparição de eventos varie ao longo do tempo.

Segundo Kapur et al. (2011, p.332), os modelos NHPP (Non-Homogeneous Poison

Process) descrevem a observação de falhas de software por meio de uma curva

exponencial. De modo que os modelos utilizam dados observados durante o processo

de testes, por exemplo, o tempo entre falhas, para estimar o número residual de

defeitos no software e o tempo de teste necessário para os detectar. Assim, estes

modelos podem lidar com dados de intervalo e ponto e assumem que a intensidade da

taxa de falhas diminuiu conforme os defeitos foram sendo detectados e removidos

(ALMERING et al., 2007, p. 83).

A modelagem da curva da taxa de defeitos assume uma forma côncava. Por isto,

Almering et al. (2007, p. 83) argumentaram que a forma côncava geral da função está

ligada ao fato de que os defeitos restantes no software são mais sutis e muitas vezes

mais difíceis de se detectar e corrigir e, portanto, demandam mais tempo de testes.

33

Os modelos NHPP permitem distinguir duas abordagens para a modelagem da

confiabilidade. Modelos finitos de defeitos partem do pressuposto de que o software

possui um número finito de defeitos e, eventualmente, pode ficar livre de defeitos. Em

tais modelos, a curva de taxa de defeitos aproxima-se de um valor finito. Mas, nos

modelos infinitos, assume-se que o número de defeitos observados é infinito

(ALMERING et al., 2007, p. 83).

3.3 Utilização de Um Fator

No contexto de utilização de SRGM, as métricas empregadas pelo modelo são

chamadas de fatores. E, dentre os diversos SRGM que foram propostos, os primeiros

modelos usavam uma única métrica como parâmetro para a avaliação de

confiabilidade.

A maioria dos SRGMs baseados em NHPP concentra-se apenas nos eventos de

detecção de defeitos e remoção durante a fase de testes. Quando se estimam os

parâmetros do modelo de SRGMs baseados em NHPP é necessário adquirir somente o

tempo de detecção de falha ou o número de falhas detectadas durante o período de

testes.

Embora tais modelos sejam fáceis de se manusear, Okamura, Etani e Dohi (2010, p.

31) afirmaram que esses parâmetros nem sempre são precisos devido à falta de

informação estatística.

34

3.3.1 Utilização de Dois Fatores

Modelos que utilizam dois fatores apresentam melhor desempenho ao fazer previsões

de confiabilidade. Okamura, Etani e Dohi (2010, p. 31) argumentaram que isso se deve

ao fato que, dada as possíveis dificuldades em se obter os dados, o modelo que se

utiliza somente de um fator não consegue fazer uma previsão de boa qualidade. Huang,

Kuo e Lyu (2007, p. 198) confirmaram isso, demonstrando o desempenho superior de

modelos que se utilizaram de dois fatores para a modelagem de confiabilidade,

empregando-se a combinação do esforço de teste como uma métrica e o processo de

depuração imperfeita, onde o processo de remoção de defeito introduz novos defeitos.

Por fim, Wang, Hemminger e Tang (2007, p. 411) buscaram incorporar a estrutura do

software como um fator de influência, mensurando a confiabilidade de cada

componente na previsão de confiabilidade do software como um todo. Singh et al.

(2007, p. 360) consideraram a dependência entre defeitos, isto é, não encarando cada

defeito como independente de outros defeitos, mas sim, relações entre defeitos, que

provocam um efeito em cascata.

3.3.2 Agregação de Mais de Dois Fatores

O aumento de métricas utilizadas, no entanto, aumenta a incerteza na hora de se obter

as próprias medidas. Isto acaba afetando a previsão de confiabilidade (LI; XIE; HUING,

2010, p. 3560), mesmo que existam maneiras de se determinar o grau de incerteza

dentro de uma previsão de confiabilidade (CHANDRAN; DIMOV; PUNNEKKAT, 2010, p.

227).

35

Okamura, Etani e Dohi (2010, p. 32) abordaram a questão da incerteza no momento de

obtenção das medidas, utilizando técnicas estatísticas para gerar um SRGM mais

simples e, consequentemente, com um nível menor de incerteza na previsão de

confiabilidade. Por sua vez, Quadri, Ahmad e Faroog (2011, p. 27) apresentaram um

modelo onde o esforço de teste segue uma distribuição exponencial generalizada,

assumindo-se que a taxa de surgimento de defeitos e o esforço de teste são

proporcionais à quantidade restante de defeitos no software. Já Kapur et al. (2011, p.

333) observaram que a remoção de um defeito, por si só, pode provocar o surgimento

de outros defeitos, notando-se que a quantidade de defeitos removidos, não

necessariamente, corresponde a mesma de defeitos observados. Por fim, Peng et al.

(2014, p. 38) consideraram o esforço de detecção de defeitos e o esforço de correção

de defeitos como dois fatores distintos que podem ser incorporados em outros SRGM.

3.4 Incerteza Limite

Um SRGM é uma ferramenta crítica para controlar a qualidade do software. No entanto,

segundo Okamura e Dohi (2008, p. 19), tais modelos enfrentam dificuldades em

representar exatamente, por meio de modelos matemáticos, o crescimento da

confiabilidade de software no mundo real. Além disso, segundo levantamento feito por

Almering et al. (2007), nenhum SRGM proposto consegue cobrir todos os cenários

possíveis de desenvolvimento de software. Por isso, tal característica vai além da

relação intrínseca entre a confiabilidade e o cenário de execução, de modo que

diferentes domínios de software apresentam dinâmicas distintas durante a fase de

testes.

Sabe-se que a confiabilidade é fortemente dependente da maneira como o sistema será

utilizado. Assim, uma vez que a confiabilidade e disponibilidade são características de

execução, o impacto de defeitos na confiabilidade pode variar dependendo da forma

36

como é utilizado o sistema, isto é, a frequência com que a parte do sistema que

apresenta defeito será executada. Portanto, a análise de diferentes formas e

frequências para executar o sistema é um desafio para a previsão de confiabilidade do

software, especialmente quando o perfil de seu uso não é conhecido de antemão

(IMMONEN; NIEMELA, 2007, p. 50).

Dentre alguns fatores, os que influenciam a incerteza incluem as características de

software como: a complexidade do programa, a cobertura de teste, ambiente de

desenvolvimento e muitos outros, que aparecem durante o ciclo de desenvolvimento

(CHANDRAN; DIMOV; PUNNEKKAT, 2010, p. 228).

Vale destacar que a maioria desses problemas aparecem, principalmente, devido à

incerteza envolvida em parâmetros de confiabilidade. Já os fatores, que contribuem

para a estimativa de confiabilidade de software, devem ser identificados (CHANDRAN;

DIMOV; PUNNEKKAT, 2010. p. 227).

Portanto, é necessário um cuidado extra para se determinar o modelo mais adequado a

ser aplicado, pois escolhendo-se um modelo inadequado pode-se fornecer dados que

resultem em decisões equivocadas dentro de um projeto de desenvolvimento de

software (ULLAH; MORISIO; VETRO, 2012, p. 189).

3.5 Depuração Imperfeita

A maioria dos modelos de crescimento de confiabilidade software propostas são

baseadas na suposição de depuração perfeita, ou seja, que todos os defeitos

detectados durante as fases de teste e operação são corrigidos e removidos

perfeitamente.

37

Peng et al. (2014, p. 38) argumentaram que as ações de depuração no ambiente de

teste e ambiente de operação não são sempre realizadas perfeitamente. Por exemplo,

erros de digitação invalidam a atividade de correção de defeito ou a remoção do defeito

não é realizada corretamente devido à análise incorreta dos resultados dos testes. Além

disso, o processo de depuração é, geralmente, longe de ser perfeito. Também, muitos

defeitos detectados pelos clientes são introduzidos durante a depuração.

Além da depuração imperfeita em atividades de correção de defeitos, é preciso

considerar a possibilidade de introduzir novos defeitos no processo de depuração. Por

isso, dois tipos de falhas de software existem nas fases de teste ou operação: falhas de

software causados por defeitos originalmente latentes no sistema de software antes do

teste (que são chamados defeitos inerentes) e falhas de software causados por defeitos

introduzidos durante a operação de software devido à depuração imperfeita.

Geralmente, recursos de teste não são constantemente alocados durante a fase de

teste de software que, em grande parte, pode influenciar a taxa de detecção de falhas e

o tempo necessário para corrigi-las. Por exemplo, o depurador pode passar uma

semana sem fazer qualquer trabalho de teste e trabalhar intensamente nos dias

seguintes. Além disso, é natural que os depuradores cometam erros e introduzam

novos defeitos durante os testes. Pois, eles tendem a introduzir mais defeitos quanto

mais esforço é despendido nos teste, visto que o código sofreu mais mudanças (PENG

et al. 2014, p. 42).

3.6 Taxa de Remoção de Defeitos

Sob a hipótese ideal de remoção instantânea e perfeita de defeitos, o número esperado

de defeitos removidos é o mesmo que o número esperado de defeitos detectados.

Gokhale, Lyu e Trivendi (2004, p. 222) argumentaram que, se leva-se ao se levar em

38

consideração o tempo necessário para a remoção, o número esperado de defeitos

removidos, em qualquer momento, dado é inferior ao número esperado de defeitos

detectados.

Por isso, a detecção de um defeito gera um impacto no processo de software, já que é

preciso dispor de um tempo extra para a correção do mesmo. Assim, quanto mais

complexo for o defeito localizado, maior é será o esforço e maior a probabilidade de

introdução de novos defeitos.

Essa relação é denominada taxa de remoção de defeitos. A real taxa de defeitos no

software, (levando em conta a remoção explícita de defeitos), é maior do que a taxa

aparente de defeitos, quando não se é levado em consideração os efeitos do processo

de remoção do defeito. Com base nisto, Gokhale, Lyu e Trivedi (2004) argumentam

que, com base nisso a confiabilidade estimada, sem levar em consideração a taxa de

remoção de defeitos, leva a uma estimativa que tende a ser otimista, ou seja, uma

confiabilidade prevista maior do que a observada na prática.

3.7 Considerações do Capítulo

Um SRGM é um modelo matemático usado para prever quantos defeitos ainda existem

e permitir a tomada de decisão de parar os testes e lançar o produto. Para tanto, é

preciso escolher o modelo mais adequado para o software em questão, bem como as

métricas a serem utilizadas. Mesmo tendo em mãos as métricas necessárias para

utilizar um determinado SRGM, é preciso também levar em consideração o tipo de

cenário para o qual o modelo foi pensado.

39

Ao se propor a utilização de um SRGM, é preciso considerar a necessidade de se

encontrar um equilíbrio entre o esforço para realizar as medições para alimentar o

SRGM e a qualidade da previsão que o modelo consegue gerar.

Por conta dessas características, muitas vezes recorre-se a um especialista da área,

seja para escolher o modelo ideal ou para se obter uma “segunda opinião” sobre a

previsão de confiabilidade (ALMERING et al. 2007, p. 87).

40

4. MODELO CAI-LYU E MÉTODO DE GOKHALE

Cai e Lyu (2007, p. 17) consideraram a cobertura de código durante a execução dos

testes como uma métrica relevante para melhorar o desempenho de previsão de

confiabilidade. Também, Cai e Lyu (2007, p. 18) relacionaram a cobertura de código

com a passagem de tempo.

Por sua vez, Gokhale, Lyu e Trivedi (1994, p. 218) argumentaram que a taxa de

remoção de defeitos de software afeta taxa de defeitos detectados e, portanto, deve ser

considerada ao estimar a confiabilidade de um software.

4.1 Modelo Cai-Lyu

Visando-se melhorar a capacidade de previsão de confiabilidade, Cai e Lyu (2007)

propuseram a utilização de dois fatores para calcular a confiabilidade do software: o

índice de cobertura de código aplicado sobre um modelo de curva e a quantidade de

defeitos detectados ao longo do tempo aplicado sobre um modelo de curva. Cai e Lyu

(2007) afirmaram que o modelo proposto permite usar quaisquer modelos padrões de

curva, dando grande flexibilidade para experimentar curvas diferentes. No presente

trabalho, o modelo proposto por Cai é chamado de modelo Cai-Lyu.

No modelo de confiabilidade de software de dois fatores, relaciona-se o tempo de

execução de testes entre a detecção de falhas e a quantidade de casos de testes

executados em relação ao total de casos de teste.

Cai e Lyu (2007) afirmaram que a confiabilidade depende do conjunto de testes

executados, de modo que a ordem com que os testes são executados influencia a

geração da curva de predição de confiabilidade.

41

Vale destacar que a confiabilidade é composta por duas estimativas: uma da cobertura

de teste e do tempo de execução. Por isso, o modelo Cai-Lyu foca nos modelos para

estimativa da cobertura de teste. Já a estimativa do tempo de execução pode vir de

outros SRGM. Assim, Cai e Lyu (2007) usaram dois modelos simplificados para obter a

estimativa da cobertura de teste: modelos hiper-exponencial e modelo beta.

A relação entre a cobertura de teste e detecção de falhas é modelada usando-se NHPP.

Desta maneira, Cai e Lyu (2007) propuseram utilizar a relação entre a cobertura de

testes e tempo como parâmetros de correção para outros modelos. Esses dois

parâmetros foram modelados usando-se NHPP, onde Os autores usaram NHPP e

exponencial para demonstrar a utilização do modelo proposto.

α1(1−℮-γ1c) F1(t) + α2(1−℮-γ2t) F2(c)

Onde, F1(t) e F2(c) podem ser modelos tradicionais.

A cobertura de código é mensurada conforme os testes são realizados. A variável c vai

de 0 a 1, 1 indicando cobertura total do código.

O modelo Cai-Lyu parte do pressuposto que a remoção de defeitos é perfeita e

instantânea, ou seja, o processo de remoção de defeitos remove completamente o

defeito e não introduz novos defeitos, bem como o processo é instantâneo e não é

contabilizado dentro do tempo de testes.

42

4.2 Estudo de Caso do Modelo Cai-Lyu

Para demonstrar a eficácia do modelo, Cai e Lyu (2007) utilizaram os dados obtidos em

um projeto realizado na Universidade de Hong-Kong em 2002, chamado de projeto

CUHK-RSDIMU. Este consistiu em formar 34 equipes independentes de

desenvolvimento com os alunos de graduação, que foram responsáveis por analisar,

codificar, testar, avaliar e documentar um software de sistema crítico da área de

aeronáutica.

Durante os quatro meses de duração do projeto, os dados acerca dos testes e da

cobertura de código foram armazenados, sendo que cada equipe de desenvolvimento

tinha que usar um software de controle de versão para registrar todas as alterações

feitas no código-fonte.

Utilizando-se o controlador de versão, Cai e Lyu (2007) geraram variações dos

softwares desenvolvidos, chamados de mutantes, emulando assim os possíveis

defeitos encontrados. Desta forma, os defeitos presentes em todos os projetos dos

estudantes foram analisados como um único projeto. Na sequência, um programa foi

desenvolvido para testar todos os mutantes contra os testes do enunciado original e os

dados foram coletados. Por fim, com a massa de dados, Cai e Lyu (2007) compararam

a estimativa de confiabilidade gerada pelo modelo Cai-Lyu com outros modelos,

atestando o melhor desempenho do modelo Cai-Lyu por contemplar a cobertura de

código.

Dentro da mesma comparação, Cai e Lyu (2007) utilizaram modelos diversos para F1(t)

e F2(c). Eles também constataram uma variação considerável no desempenho de

estimativa de confiabilidade.

43

4.3 Limites do Modelo Cai-Lyu

O modelo de Cai (CAI; LYU, 2007) foi testado contra uma base de dados elaborada em

um ambiente acadêmico, como resultado de um programa empregando alunos de

graduação. Como tal, é importante ressaltar a necessidade de comparar o modelo

proposto com dados de projetos elaborados em ambientes corporativos, testando o

modelo contra outras dinâmicas de desenvolvimento e testes.

Cai e Lyu (2007) também salientaram que a escolha dos modelos para F1(t) e F2(c)

afeta o desempenho da estimativa final. Outro fator limitante, mencionado pelos

próprios autores, foi a necessidade de coletar uma quantidade maior de dados durante

a fase de testes, no caso a cobertura de código. Porém, esta informação nem sempre

está disponível em outros projetos.

4.4 Método de Gokhale

Gokhale, Lyu e Trivedi (2004, p. 218) propuseram considerar o impacto que a correção

de defeitos detectados causa no processo de testes e na confiabilidade do software. O

argumento é que, enquanto um modelo de confiabilidade pode utilizar a taxa de

detecção de defeitos para aferir a quantidade de defeitos remanescentes no software,

essa métrica assume a correção instantânea e perfeita de defeitos.

Assim, segundo esses pesquisadores (2004), a taxa de defeitos detectados acaba por

ser uma métrica otimista, por não levar em consideração o tempo necessário para

corrigir os defeitos detectados. Eles também defenderam duas linhas para modelar a

relação entre a taxa de falhas detectadas e os defeitos corrigidos.

44

A primeira linha assume que a taxa de defeitos removidos é constante, isto é, não

dependem da taxa de detecção de defeitos:

α(1 − ℮-βt)

A segunda linha trata de defeitos latentes, isto é, ao se remover um defeito, o

desenvolvedor acaba corrigindo também outras partes relacionadas com o defeito

detectado, mas que ainda não se traduziram em defeitos detectados. Por isso, Os

defeitos latentes são, inerentemente, mais difíceis de se remover:

α℮-βt

Cabe salientar que a equação para taxa de remoção de defeitos, considerando-se os

defeitos latentes, foi apresentada por Gokhale, Lyu e Trivedi (2004, p.218) como uma

hipótese.

Para efeitos de avaliação, o presente trabalho utilizou a equação para taxa constante

de remoção de defeitos.

4.5 Considerações do Capítulo

Cai e Lyu (2007) apresentaram um SRGM flexível, baseado na cobertura de código e o

tempo de execução de testes. Utilizando um estudo de caso, Cai e Lyu demonstraram

que o SRGM apresentado produzia uma estimativa de crescimento de confiabilidade

melhor do que outros modelos que não utilizam a cobertura de código. Em

contrapartida, o modelo de Cai e Lyu parte do pressuposto que defeitos são detectados

e corrigidos instantâneamente, sem a inserção de novos defeitos.

45

Visando endereçar este tipo de pressuposto, Gokhale, Lyu e Trivedi (2004, p. 218)

propôem um método para levar em consideração o impacto que o processo de correção

de defeitos produz na taxa de detecção de defeitos. Gokhale, Lyu e Trivedi

argumentam que, ao considerar a taxa de correção de defeitos, é possível produzir

estimativas de crescimento de confiabilidade mais realistas.

46

5. MODELO PROPOSTO

Conforme discutido o capítulo 3.7, a escolha de um SRGM para utilização num

determinado projeto de software deve levar em consideração o tipo de cenário para o

qual o modelo foi pensado. Por conta disso, a escolha do SRGM mais adequado é mais

trabalhosa e pode demandar a opinião de um especialista para a escolha do modelo a

ser usado (ALMERING et al. 2007, p. 87).

Neste contexto, o modelo Cai-Lyu mostra-se bastante promissor por conta de sua

flexibilidade e da extensa comparação com outros modelos (CAI; LYU, 2007, p. 24). De

acordo com os autores, a relação da cobertura de testes com o tempo de execução dos

testes é o diferencial do modelo e a razão para o desempenho superior em comparação

com outros modelos.

A flexibilidade do modelo Cai-Lyu pode mitigar o problema de escolher um modelo

adequado a um projeto de software. Porém, no levantamento bibliográfico do presente

trabalho, não foram encontrados novos desdobramentos do modelo Cai-Lyu,

especificamente no pressuposto assumido pelos autores, que os defeitos são corrigidos

instantaneamente e, portanto, o processo de remoção de defeitos não afeta a

estimativa de confiabilidade do software (CAI; LYU, 2007, p. 18).

Além deste fato, observa-se que o modelo Cai-Lyu foi utilizado com uma massa de

dados de um projeto executado em ambiente universitário. Cabe, então, averiguar qual

seria o desempenho do modelo Cai-Lyu utilizando-se os dados de um projeto

executado fora do ambiente controlado por uma universidade. Mais do que isso, é

interessante verificar que o pressuposto sobre o processo de remoção de defeitos

mantém-se verdadeiro durante a aplicação em um estudo de caso.

47

O estudo de caso apresentado por Cai e Lyu não apresenta a remoção de defeitos, por

tratar-se da análise de projetos previamente finalizados, portanto tornando a taxa de

remoção de defeitos irrelevante para a análise apresentada pelos autores.

Por conta da flexibilidade do modelo Cay-Lyu e por conta do foco na cobertura de

código, é possível utilizar um modelo matemático que leve em conta a taxa de remoção

de defeitos para a estimativa do tempo de execução dos testes.

Durante o levantamento bibliográfico do presente trabalho, não foram encontrados

artigos apoiando ou refutando, por meio de um estudo de caso, a utilização da taxa de

remoção de defeitos como um fator relevante para a previsão da confiabilidade de

software, conforme proposto por Gokhale, Lyu e Trivedi (2004). É plausível assumir que

o tempo necessário para corrigir os defeitos afeta o processo de detecção de novos

defeitos, além da contagem de detecção de defeitos não levar em consideração os

defeitos que ainda estão na fila para serem corrigidos (GOKHALE; LYU; TRIVEDI,

2004, p. 228).

Este trabalho propôs-se a combinar o modelo de Cai-Lyu com o método de Gokhale

para constatar a influência que a taxa de remoção de defeitos tem sobre um modelo de

previsão de confiabilidade.

Gokhale, Lyu e Trivedi (2004) apresentaram dois métodos para relacionar os defeitos

detectados e os defeitos corrigidos em um dado instante t. O primeiro método modela a

taxa de defeitos corrigidos usando uma curva NHPP. O segundo método busca modelar

defeitos latentes, ou seja, defeitos que ainda não foram detectados, porém são

corrigidos durante a correção de um determinado defeito.

48

Como o método proposto por Gokhale, Lyu e Trivedi (2004) para taxa de remoção de

defeitos latentes é hipotética, o presente trabalho não a utiliza, a fim de facilitar a

análise dos resultados.

Sendo assim, o modelo de Cai-Lyu,

α1(1−℮-γ1c) F1(t) + α2(1−℮-γ2t) F2(c)

foi utilizado na sua forma original, empregando-se o método de Gokhale para taxa

constante de remoção de defeitos como F1(t). Para F2(c), foi utilizada uma distribuição

NHPP em relação à cobertura de código em função do tempo.

O modelo proposto utiliza NHPP para a cobertura de código, de modo a manter

uniformidade com o modelo NHPP utilizado no método de Gokhale.

O modelo resultante foi chamado de Cai-Gokhale.

49

6. APLICAÇÃO E ANÁLISE

Para avaliar o modelo proposto, foram usados os dados de um sistema desenvolvido

pela Secretaria de Tecnologia de Informação – SETI, Subsecretaria de

Desenvolvimento e Manutenção de Sistemas – UDEM, do Tribunal Regional Federal da

3ª Região.

O sistema desenvolvido tem como objetivo integrar dois sistemas legados,

implementando um sistema de workflow.

A relação dos módulos e correspondentes testes está listada no Anexo 1. No entanto,

as partes sensíveis dos dados foram omitidas.

Para a fase de testes do sistema, foram usadas 812 horas, aplicando-se 146 testes.

Como resultado, foram detectados 55 defeitos. E, para efetuar os testes e análises dos

modelos propostos, foi utilizado o programa RGA versão 10 da suíte de software

Reliasoft.

Na Figura 1 é possível observar que a curva formada possui um pico de falhas

acumuladas x vs tempo, após 400 h de testes. Isto ocorreu porque neste período foram

iniciados os testes do módulo M12 e, consequentemente, a correção dos primeiros

defeitos desencadeou alterações profundas em outras partes do código que já tinham

sido testadas previamente, o que gerou retrabalho nos testes. Como foi explanado

anteriormente, este é um comportamento não previsto no modelo Cai-Lyu, o que torna

este estudo de caso particularmente interessante para análise e discussão.

50

Figura 1 – Curva de falhas acumuladas durante a fase de testes

Fonte: Autor

Utilizando-se a relação de módulos e funcionalidades implementadas, foi possível

mapear a cobertura de código em cada teste. Nota-se que um determinado trecho de

código pode ser executado por mais de um teste. Segundo o desenvolvedor

responsável pelo projeto, foi do entendimento do setor de desenvolvimento que os

trechos comuns de código somente seriam considerados cobertos depois que todas as

funcionalidades que fizessem referência ao dito trecho fossem executados.

51

Assim, para adequar os dados obtidos de modo a utilizar os modelos propostos, foram

calculadas as horas acumuladas de teste e as falhas acumuladas detectadas. Por isso,

foi usado o Método dos Quadrados Mínimos (YAMADA, 2014, p. 31) para determinar os

parâmetros necessários para a execução dos modelos.

beta: 0.523160

alfa: 0.504302

Para os modelos de taxa de defeitos encontrados, F1(t), e cobertura de código, F2(c),

necessários para utilizar o modelo Cai-Lyu, foi usado o modelo NHPP.

Na Figura 2, é possível verificar a comparação entre a curva de falhas acumuladas

durante a fase de testes e a curva de estimativa gerada pelo modelo Cai-Lyu.

52

Figura 2 – Curva do modelo Cai-Lyu (vermelho) em relação à curva de falhas

acumuladas (azul)

Fonte: Autor

Calculando-se a área formada pelas curvas de falhas acumuladas e a curva formada

pelo modelo Cai-Lyu, é possível quantificar quão próximo a previsão do modelo chegou

da realidade (YAMADA, 2014, p. 58). Neste caso, a área formada pela curva de falhas e

o modelo Cai-Lyu é de 7,02 horas por falha detectada, isto é, o modelo Cai-Lyu prevê

53

um esforço de horas de teste por falha detectada 7,02 horas menor do que o observado

na curva de falhas acumuladas.

Na Figura 3, é possível observar a comparação entre a curva de falhas acumuladas

durante a fase de testes e a curva de estimativa gerada pelo modelo Cai-Gokhale.

Figura 3 – Curva do modelo Cai-Gokhale (verde) em relação à curva de falhas

acumuladas (azul)

Fonte: Autor

54

A área formada pela curva de falhas e o modelo Cai-Gokhale é 9,26 horas por falha

detectada, isto é, o modelo Cai-Gokhale prevê um esforço de testes de 9,26 horas a

mais do que o observado na curva de falhas acumuladas.

Utilizando-se somente a área formada pelos modelos, seria possível concluir que o

modelo Cai-Lyu possui um desempenho melhor do que o modelo Cai-Gokhale: a

diferença entre o esforço previsto pelo modelo Cai-Lyu em relação ao observado na

prática é menor do que a diferença entre o esforço previsto pelo modelo Cai-Gokhale

em relação ao observado na prática.

Além disso, é possível observar o efeito do método de Gokhale em ação, ao gerar uma

previsão mais pessimista, prevendo um esforço maior de horas de teste, onde o modelo

Cai-Lyu prevê um esforço menor do que o observado na prática.

Como a diferença entre os dois é a utilização do método de Gokhale, à primeira vista,

tem-se a impressão que a utilização da taxa de remoção de defeitos como fator em um

SRGM não melhora o desempenho da estimativa de confiabilidade. No entanto, é

possível tirar mais conclusões após analisar o gráfico dividido em regiões. Para facilitar

a análise, o gráfico foi dividido em quatro regiões, conforme está apresentado na Figura

4.

55

Figura 4 – Regiões de interesse para análise da curva de falhas acumuladas

Fonte: Autor

O gráfico apresentado na Figura 4 foi dividido em quatro regiões para ressaltar a

diferença de desempenho entre as previsões dos modelo Cai-Lyu e Cai-Gokhale.

Em cada região, foi considerada a área formada entre a curva de falhas acumuladas e

os modelos aqui analisados.

56

A Região 1, que comprime os dados das primeiras 180 h de teste, apresenta uma área

de 4,36 horas de diferença por falha detectada entre a curva de falhas e o modelo Cai-

Lyu. Já contra uma área de 5,62 horas de diferença por falha detectada entre a curva

de falhas e o modelo Cai-Gokhale.

A Região 2 corresponde aos dados coletados entre 180 h e 360 h de teste. Nesta

região, a área entre a curva de falhas e o modelo Cai-Lyu é 3,54 horas de diferença por

falha detectada, contra uma área de 11,67 horas de diferença por falha detectada entre

a curva de falhas e o modelo Cai-Gokhale.

A Região 3 é a de maior interesse para esta análise, pois representa um pico de falhas

acumuladas, decorrentes do início dos testes do módulo denominado M12 (vide Anexo

1), sendo que ela comprime os dados coletados entre as marcas de 360 h e 540 h de

testes.

Observa-se que nesta região o modelo Cai-Gokhale possui um desempenho melhor,

justamente por conta da abordagem “pessimista” do método de Gokhale, de modo que

a área entre a curva de falhas e o modelo Cai-Lyu é 14,22 horas de diferença por falha

detectada, contra uma área de 6,77 horas de diferença por falha detectada do modelo

Cai-Gokhale em relação à curva de falhas.

A Região 4 compreende os dados coletados entre as marcas de 540 h e 816 h de teste.

Nesta região, o modelo Cai-Lyu volta a ter um desempenho melhor, apresentando uma

área de 6,37 horas de diferença por falha detectada em relação à curva de falhas,

contra uma área de 11,41 horas de diferença por falha detectada do modelo Cai-

Gokhale em relação à curva de falhas.

57

Conclui-se que o modelo de Cai-Lyu possui melhor aproximação com a realidade no

começo, porém este modelo ajusta a curva conforme a cobertura de testes e o tempo

de execução, não levando em conta o repentino aumento da taxa de detecção de falhas

no começo dos testes de M12.

Comparando-se as curvas geradas pelo modelo Cai-Lyu e Cai-Gokhale, é possível

observar que o primeiro de fato gerou uma estimativa mais otimista, possivelmente por

não levar em consideração o processo de remoção de defeitos. Sendo que esse efeito

confirma a observação de Gokhale, Lyu e Trivedi (2004, p. 228).

A abordagem mais “pessimista” do método de Gokhale pode ser observada na curva do

modelo Cai-Gokhale, onde somente o pico de detecções de falhas na Região 3 supera

a previsão do modelo.

58

7. CONSIDERAÇÕES FINAIS

O objetivo do trabalho foi avaliar a influência que o impacto dos defeitos encontrados

exerce sobre o software no processo de previsão de confiabilidade do software.

Também, o SRGM proposto por Cai e Lyu, juntamente com o método proposto por

Gokhale, Lyu e Trivedi para calcular a taxa de remoção de defeitos foram combinados.

O modelo resultante foi chamado de modelo Cai-Gokhale e este foi aplicado em um

estudo de caso de software de workflow desenvolvido por uma instituição pública

brasileira. A influência da taxa de remoção de defeitos sobre a previsão de

confiabilidade foi discutida.

Este trabalho verificou a relevância do tempo de correção de defeitos como métrica

junto da métrica de cobertura de código para avaliar a confiabilidade de software. Para

tal, utilizou-se um estudo de caso recente no Brasil, fora do ambiente controlado por

trabalho acadêmico.

7.1 Conclusões

Ao comparar os resultados obtidos pelo modelo Cai-Lyu e o modelo proposto por este

trabalho, chamado Cai-Gokhale, averiguou-se que o modelo Cai-Lyu representa melhor

a curva de dados. Porém, a exceção ocorre na Região 3, onde o modelo Cai-Lyu não

acompanha o repentino aumento de detecção de falhas.

Deste modo, concluiu-se que a utilização da métrica de tempo de correção de defeitos

detectados no SRGM não resultou em uma melhoria na previsão de crescimento da

confiabilidade do software. Por outro lado, o fato da curva gerada pelo modelo Cai-

Gokhale acompanhar o repentino aumento na taxa de falhas, na Região 3, indica um

potencial para futuros trabalhos.

59

7.2 Contribuições do Trabalho

Este trabalho constatou que o tempo de remoção de defeitos, de fato, exerce impacto

na taxa de detecção de defeitos. Para tal, criou-se um modelo híbrido, utilizando-se a

flexibilidade do modelo Cai-Lyu com a possibilidade de levar em consideração o tempo

de remoção de defeitos.

Durante o estudo de caso, foi possível observar que a previsão de crescimento de

confiabilidade do software mostrou-se pessimista, isto é, superestimando os possíveis

defeitos ainda não detectados. Esta característica é exatamente descrita por Gokhale,

Lyu e Trivedi (2004, p. 228). Sendo assim, o modelo proposto Cai-Gokhale une a

flexibilidade do modelo Cai-Lyu, que permite utilizar outros modelos de acordo com a

necessidade do projeto em questão, com a “prudência” do método de Gokhale, Lyu e

Trivedi.

Já a flexibilidade do modelo Cai-Lyu é, particularmente, interessante porque mitiga a

limitação dos SRGM de não serem capazes de cobrir todos os cenários de projeto de

software, sendo necessária a seleção de um modelo adequado (ALMERING et al.,

2007, p. 87; IMMONEN; NIEMELA, 2007, p. 49). Em contrapartida, o método de

Gokhale, Lyu e Trivedi (2007) mitiga possíveis previsões “otimistas”, que correm o risco

de subestimar a quantidade real de defeitos restantes no software.

7.3 Trabalhos Futuros

Para trabalhos futuros, existe a possibilidade de se empregar outros modelos ou curvas

a fim de averiguar se a diferença entre falhas acumuladas e falhas corrigidas pode ser

expressa por outras curvas, além da NHPP, proposta por Gokhale. Como se sabe, o

modelo de Cai-Lyu abre possibilidade para várias explorações, por conta de sua

60

flexibilidade para escolha de modelos para F1(t) e F2(c). Enquanto o método de

Gokhale, para modelagem de correção de defeitos latentes, também abre espaço para

maiores explorações.

Outro aspecto a ser considerado, é a maneira como a cobertura de código é

mensurada. No estudo de caso aqui empregado, foi feito um mapeamento prévio dos

testes, onde uma função foi considerada coberta pelos testes depois que fossem

executados todos os testes que poderiam executar aquela função.

Portanto, uma consequência da utilização da cobertura de código como fator é que se

parte do pressuposto que a cobertura de código é sempre crescente. Isto poderia ser

questionado neste estudo de caso, pois o pico de detecção de defeitos na Região 3,

possivelmente, implicou em alteração de códigos que já tinham sido testados

previamente, e precisaram ser testados novamente. Segundo a sistemática adotada por

Cai e Lyu (2007), a cobertura de testes não retrocede de acordo com as correções

feitas.

Desta maneira, este é um potencial tema para futuros trabalhos, já que o retrocesso na

cobertura de códigos foi aplicado neste estudo de caso. Assim, de modo a facilitar e

incentivar futuras explorações, os dados do estudo de caso utilizados na análise deste

trabalho encontram-se nos anexos para consulta.

61

REFERÊNCIAS

ALMERING, V.; GENUCHTEN, M.; CLOUDT, G.; SONNEMANS, P. J. M. Using
Software Reliability Growth Models in Practice, IEEE Computer Society , 2007.

BOEHM, B. W.; BROWN, J. R.; LIPOW, M. Quantitative evaluation of software
quality. 2Nd International Conference on Software Engineering, IEEE Computer
Society Press, Los Alamitos, 1976.

CAI, X.; LYU, M. R. Software Reliability Modeling with Test Coverage:
Experimentation and Measurement with A Fault-Tolerant Software Project,
Department of Computer Science and Engineering, The Chinese University of Hong
Kong, Hong Kong, 2007.

CHANDRAN, S. K.; DIMOV, A.; PUNNEKKAT, S. Modeling uncertainties in the
estimation of software reliability – a pragmatic approach. Fourth IEEE International
Conference on Secure Software Integration and Reliability Improvement, 2010.

GOKHALE , S. S.; LYU, M. R.; TRIVEDI, K. S. Analysis of Software Fault Removal
Policies Using a Non-Homogeneous Continuous Time Markov Chain. Software
Quality Journal, 12, Kluwer Academic Publishers , 2004.

HIRAMA, K. Engenharia de Software: qualidade e produtividade com tecnologia.
Elsevier. Rio de Janeiro , 2011.

HUANG, C.; KUO, S.; LYU, M. R. An Assessment of Testing-Effort Dependent
Software Reliability Growth Models, IEEE TRANSACTIONS ON RELIABILITY, Vol.
56, No. 2, 2007.

HUMPHREY, W. S. Managing the Software Process. Addison-Wesley. USA. 1989.

IMMONEN, A.; NIEMELA, E. Survey of reliability and availability prediction
methods from the viewpoint of software architecture, Springer-Verlag, 2007.

ISO. ISO/IEC 25010. Systems and software engineering -systems and software
Quality Requirements and Evaluation (SQuaRE) - System and Software Quality
Models. INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. Geneva, 2011.

JAFFAL, W.; TIAN, J. Defect Analysis and Reliability Assessment for Transactional
Web Applications. IEEE International Symposium on Software Reliability Engineering
Workshops, 2014.

62

KAPUR, P. K.; PHAM, H.; ANAND, S.; YADAV, K. A Unified Approach for Developing
Software Reliability Growth Models in the Presence of Imperfect Debugging and
Error Generation. IEEE Transactions on Reliability, Vol. 60, No. 1, 2011.

LI, X.; XIE, M.; HUI NG, S. Sensitivity analysis of release time of software reliability
models incorporating testing effort with multiple change-points. Applied
Mathematical Modelling, No. 34, 2010.

OKAMURA, H.; DOHI, T. Software Reliability Modeling Based on Mixed Poisson
Distributions. International Journal of Reliability, Quality and Safety Engineering, Vol.
15, No. 1, 2008.

OKAMURA, H.; ETANI, Y.; DOHI, T. A Multi-Factor Software Reliability Model Based
on Logistic Regression. IEEE 21st International Symposium on Software Reliability
Engineering, 2010.

PENG, R.; LI, Y. F.; ZHANG, W. J.; HU, Q. P. Testing effort dependent software
reliability model for imperfect debugging process considering both detection and
correction. Reliability Engineering and System Safety 126, 2014.

PRESSMAN, R. S. Engenharia de software. São Paulo: Pearson Education do Brasil,
1995.

QUADRI, S. M. K.; AHMAD, N.; FAROOG, S. U. Software Reliability Growth
modeling with Generalized Exponential testing–effort and optimal SOFTWARE
RELEASE policy. Global Journal of Computer Science and Technology Volume 11
Issue 2, 2011.

SINGH, V. B.; YADAV, K.; KAPUR, R.; YADAVALLI, V. S. S. Considering the Fault
Dependency Concept with Debugging Time Lag in Software Reliability Growth
Modeling Using a Power Function of Testing Time. International Journal of
Automation and Computing, 2007.

SOMMERVILLE, I. Engenharia de Software. 9a. Edição. Addison-Wesley. São Paulo,
2011.

ULLAH, N.; MORISIO, M.; VETRO, A. A Comparative Analysis of Software Reliability
Growth Models using defects data of Closed and Open Source Software. IEEE
35th Software Engineering Workshop, 2012.

63

WANG, W.; HEMMINGER, T. L.; TANG, M. A Moving Average Non-Homogeneous
Poisson Process Reliability Growth Model to Account for Software with Repair
and System Structures. IEEE TRANSACTIONS ON RELIABILITY, Vol. 56, No. 3,
2007.

YADAV, A.; KHAN, R. A. Critical Review on Software Reliability Models. International
Journal of Recent Trends in Engineering and Technology, Vol. 2, No. 3, 2009.

YAMADA, S. Software Reliability Modeling - Fundamentals and Applications.
Tottori, Springer , 2014.

64

ANEXOS

Anexo 1 – Relação de módulos e casos de uso do sistema usado no estudo de caso
Módulo Caso de uso
M1 UC-1

UC-2
UC-3
UC-4
UC-5
UC-6
UC-7
UC-8
UC-9
UC-10
UC-11
UC-12

M2 UC-13
UC-14
UC-15
UC-16
UC-17
UC-18
UC-19
UC-20
UC-21
UC-22
UC-23
UC-24
UC-25
UC-26
UC-27
UC-28

M3 UC-29
UC-30
UC-31
UC-32
UC-33
UC-34
UC-35
UC-36
UC-37
UC-38
UC-39

65

Anexo 1 (continuação) – Relação de módulos e casos de uso do sistema usado no
estudo de caso
Módulo Caso de uso
M4 UC-40

UC-41
UC-42
UC-43
UC-44
UC-45
UC-46
UC-47

M5 UC-48
UC-49
UC-50
UC-51
UC-52
UC-53
UC-54
UC-55
UC-56
UC-57
UC-58
UC-59
UC-60
UC-61
UC-62
UC-63
UC-64
UC-65
UC-66

M6 UC-67
UC-68
UC-69
UC-70
UC-71
UC-72
UC-73
UC-74
UC-75

M7 UC-76
UC-77
UC-78
UC-79

66

Anexo 1 (continuação) – Relação de módulos e casos de uso do sistema usado no
estudo de caso
Módulo Caso de uso

UC-80
UC-81
UC-82
UC-83
UC-84

M8 UC-85
UC-86
UC-87
UC-88
UC-89
UC-90
UC-91
UC-92
UC-93
UC-94
UC-95

M9 UC-96
UC-97
UC-98
UC-99

M10 UC-100
UC-101
UC-102
UC-103
UC-104
UC-105
UC-106
UC-107
UC-108
UC-109
UC-110
UC-111
UC-112
UC-113

M11 UC-114
UC-115
UC-116
UC-117
UC-118
UC-119

67

Anexo 1 (conclusão) – Relação de módulos e casos de uso do sistema usado no estudo
de caso
Módulo Caso de uso

UC-120
UC-121
UC-122
UC-123
UC-124
UC-125
UC-126
UC-127
UC-128
UC-129
UC-130
UC-131
UC-132
UC-133

M12 UC-134
UC-135
UC-136
UC-137
UC-138
UC-139
UC-140
UC-141
UC-142
UC-143
UC-144
UC-145
UC-146

68

Anexo 2 – Relação de horas acumuladas de teste e defeitos acumulados detectados
Horas Defeitos
2 0
6 4
8 5
48 6
90 12
190 13
192 16
222 16
224 16
226 21
234 21
236 21
238 21
240 21
258 22
260 26
262 26
264 27
390 27
404 36
414 37
416 38
424 39
448 39
450 49
452 52
524 54
526 55
528 55
532 55
534 55
536 55
542 55
816 55

69

Anexo 3 – Relação de horas acumuladas de teste e cobertura de código
Horas Cobertura
2 0
6 0.0294117647
8 0.0588235294
48 0.0882352941
90 0.1176470588
190 0.1470588235
192 0.1764705882
222 0.2058823529
224 0.2352941176
226 0.2647058824
234 0.2941176471
236 0.3235294118
238 0.3529411765
240 0.3823529412
258 0.4117647059
260 0.4411764706
262 0.4705882353
264 0.5
390 0.5294117647
404 0.5588235294
414 0.5882352941
416 0.6176470588
424 0.6470588235
448 0.6764705882
450 0.7058823529
452 0.7352941176
524 0.7647058824
526 0.7941176471
528 0.8235294118
532 0.8529411765
534 0.8823529412
536 0.9117647059
542 0.9411764706
816 0.9705882353

70

Anexo 4 – Relação de horas acumuladas de teste e previsão de falhas acumuladas
detectadas pelo modelo Cai-Lyu
Horas Falhas
2 0
6 1
8 1
48 6
90 9
190 17
192 17
222 19
224 19
226 20
234 21
236 21
238 21
240 22
258 23
260 23
262 24
264 24
390 32
404 33
414 34
416 35
424 35
448 37
450 37
452 38
524 42
526 43
528 43
532 44
534 44
536 44
542 45
816 61

71

Anexo 5 – Relação de horas acumuladas de teste e previsão de falhas acumuladas
detectadas pelo modelo Cai-Gokhale
Horas Falhas
2 1
6 3
8 4
48 12
90 17
190 28
192 29
222 32
224 32
226 32
234 33
236 33
238 33
240 33
258 35
260 35
262 35
264 35
390 46
404 47
414 48
416 48
424 49
448 51
450 51
452 51
524 57
526 57
528 57
532 57
534 57
536 57
542 58
816 77

